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Part B2: The scientific proposal 

Section a. State-of-the-art and objectives 

a.1 Objectives 
Humans use language to communicate about the world, from immediate sensory information (“Caution, 

it’s hot!”) to very abstract knowledge acquired through the years or even through generations (“The Universe 
is expanding”). Modeling the process by which we use linguistic expressions to refer to the outside world is 
fundamental for understanding language, a defining trait of the human species. The goal of AMORE is to 
advance the state of the art in Computational Linguistics, Linguistics, and Artificial Intelligence by 
developing a model of linguistic reference to entities implemented as a computational system that can 
learn its own representations from data. I focus on concrete entities (physical objects humans perceive as a 
unit) because they constitute a well-delimited domain, representative of the larger reference problem (see 
Section a.4).  

Linguistic reference crucially involves both continuous and discrete aspects of meaning. A noun phrase 
such as “the big tree” gives us some descriptive content that allows us to identify a particular entity through 
some of its properties (Frege 1892). However, this descriptive content is notoriously fuzzy (Fodor et al. 
1980; Cruse 1986; Keefe 2000): The word “tree” applies to “many unlike individuals of diverse size and 
form” (Borges 1944), from near-bushes to sequoyas to even genealogical trees, with no definite criteria nor 
clear boundaries between what counts as a tree and what doesn’t. Fuzziness persists when composing words 
into phrases and sentences: For instance, “red car” applies to objects with a different color than “red cheek”, 
and the semantic contribution of “red” changes in a continuous fashion depending on the modified noun 
(Boleda et al. 2013), e.g. going towards pink or orange. The fuzzy, continuous nature of meaning is actually 
a very useful trait of language, and the conceptual system it relies on, because it allows us to handle an 
infinitely varied, ever-changing reality reusing knowledge about previously encountered situations (Murphy 
2002; van Deemter 2010).  

When phrases with fuzzy descriptive content are used in a specific context, however, they are used to 
refer to specific entities in the real world. Humans treat the referents picked out by referential expressions as 
essentially discrete, and language offers us tools to deal with that, too. For instance, a speaker uttering 
example (1) uses the noun phrase “a box” to introduce a specific, discrete entity in the current discourse, and 
the anaphoric pronoun “it” to refer back to precisely that entity and add more information about it (Kamp 
and Reyle 1993).  

(1)   The man lifted a box. It was heavy. 
Thus, linguistic referents are both discrete (they are clearly delimited with respect to each other and 

individuated through linguistic mechanisms such as the use of noun phrases and pronouns) and continuous 
(they are linked to rich descriptive content). Some of the most successful previous work in theoretical and 
computational semantics, however, is markedly biased towards one aspect, at the expense of the other. 
Formal semantics (Montague 1970 and subsequent work) employs logic and other symbolic mathematical 
tools to provide discrete semantic representations of linguistic expressions. This approach has advanced our 
understanding of the linguistic mechanisms that individuate referents. For instance, it can model the fact that 
when I say “the big tree” I pick out a unique object that is a big tree, that indefinite noun phrases (“a box”) 
are used to introduce new referents in the discourse whereas definite ones (“the man”) point to already 
accessible referents, and that pronouns are pointers to referents (Kamp 1981, Kamp and Reyle 1993). 
However, formal semantics says little about the characteristic properties of a big tree or a box, and 
consequently about how we are able to pick out the right entity in the first place. Distributional semantics 
(see Turney and Pantel 2010 for an overview) models meaning in terms of context of use, and it provides 
numerical, continuous distributed representations for linguistic expressions. This approach focuses on 
descriptive content, successfully modeling graded semantic phenomena such as word and phrase similarity 
(“box” – “package”, “important route” – “major road”; Landauer and Dumais 1997; Baroni and Zamparelli 
2010) and meaning modulation (the difference in red in “red car” vs. “red cheek”; Boleda et al. 2013). 
However, current distributional models do not have a notion of an individuated referent to attach the 
descriptive content to: Their semantic representations do not have the right structure to distinguish between 
different referents. As a result, they might for instance tell us that “box” and “package”, being conceptually 
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similar, can in principle denote the same referent, but they are useless at telling us if, in a specific discourse, 
the two expressions are indeed pointing to the same referent or not. 

The shortcomings of each approach severely limit their applicability in Computational Linguistics tasks 
that require natural language interpretation. For instance, Bos and Markert (2005) applied a formal semantic 
system to Recognizing Textual Entailment, which seeks to model natural language inference (e.g., “Crude oil 
prices soared to record levels” entails “Crude oil prices rose”, but “The white man spoke” does not entail 
“The black man spoke”). The system was reasonably precise: When it predicted entailment, it was right 77% 
of the time. However, it was able to predict only 6% of the entailments; because of its poor treatment of 
descriptive content, it had very low coverage. This system was for instance unable to relate “[a] sport utility 
vehicle drifted onto the shoulder of a highway and struck a parked truck” to “car accident”. Systems that 
solely use distributional semantics have a better coverage but a lower precision (Beltagy et al. 2013): 
Entailment decisions require predicting whether an expression applies to the same referent or not, and these 
systems make trivial mistakes, such as deciding that “white man” and “black man”, being conceptually 
similar, should co-refer. 

I believe that the lack of tools to adequately handle descriptive content is an insurmountable roadblock for 
symbolic approaches such as formal semantics. My strategy therefore is to take inspiration from some 
important insights in the formal tradition, but focus on pushing the limits of distributional semantics, a fast-
moving and exciting area to which I am strongly contributing. AMORE will endow distributional 
semantics with referential capabilities. Thanks to my original adaptation to language of very recent 
developments in Machine Learning, the AMORE model will be able to automatically induce and operate 
with individuated referents which, however, have a continuous distributed internal representation, 
accounting for the conceptual richness of the process of referring. The use of these advances further allows 
the model to integrate two major sources of information about referred entities (Kamp 2015): Perceptual 
information from the environment, and previous knowledge gained through language. 

The goals of AMORE are to: 
•   Develop a model of reference to entities that links descriptive content and individuated referents. 
•   Implement it as a computational (specifically, neural network) system that is able to learn 

representations from data.  
•   Test it extensively in experiments involving reference to entities in discourse and in the 

perceptual (visual) environment.  
•   Explore the consequences of moving to distributed entity representations for Computational 

Linguistics, Linguistics more generally, and Artificial Intelligence. 

a.2 The project in the context of the state of the art 
Here we explain how the project stands with respect to previous theoretical and computational work that 

is of direct relevance to it. We will not review some important approaches to semantics, such as cognitive 
linguistics (Croft and Cruse 2004) or the psychological and philosophical literature on concepts (Margolis 
and Laurence 1999), although some of their concerns and empirical results will be present in the project. 
Formal semantics (Montague 1974 and subsequent work) is rooted in analytic philosophy. It uses symbolic 
mathematical tools, prominently logic, to represent natural language meaning, with a special emphasis on the 
effect of semantic composition. Formal semantics puts reference center stage: It treats meaning as a mapping 
from linguistic expressions to the world. Typically, the referents of expressions are represented as variables 
in a logical representation. Having explicit variables for referents is very useful: Among other advantages, it 
makes it easy to track referents as a discourse unfolds, and it also allows for systematic links between the 
shape of linguistic expressions and their referential import, as explored in Discourse Representation Theory 
(DRT), a prominent formal semantic framework that inspires our distributional model (Kamp 1981; Kamp 
and Reyle 1993). For instance, a simplified formalization of the two-sentence discourse example (1) above in 
DRT would be as follows: 

(2) x y 
man(x) 
box(y) 

lifted(x,y) 

(The man lifted a box.) 

(3) x y 
man(x) 
box(y) 

lifted(x,y) 
heavy(y) 

(It was heavy.) 
 

 

In (2), we find the semantic representation of the ongoing discourse after processing the first sentence: There 
are two discourse referents, represented by variables x (for the entity denoted by “the man”) and y 
(introduced by the indefinite noun phrase “a box”). In (3), we augment the representation with the 
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information in the second sentence. The sentence concerns an entity that, as signaled by the anaphoric 
pronoun “it”, is already introduced; thus, after resolving the anaphora, we obtain a representation that shows 
that the entity that is a box, lifted by the man, and heavy is one and the same. DRT specifies a systematic 
mapping from natural language sentences to this kind of semantic representation, and it has been 
implemented in a computational tool that produces DRT representations for free English text (Bos 2008). 

Words with descriptive content, such as nouns, adjectives and verbs, are represented as logical predicates: 
for instance, “box” is translated as a predicate that applies to a single argument (in the example, the discourse 
referent represented by y). These predicates have no internal structure nor link to their descriptive content 
(beyond the mapping to their referents; but then, without an account of the descriptive content it is not clear 
how speakers can connect the predicates to their referents in the first place; Baroni et al. 2014a). As a result, 
for instance the words “box” and “package” correspond to distinct predicates, as distinct as, say, “box” and 
“smile”. There have been attempts to address this problem within formal semantics, such as the use of 
meaning postulates and decompositional mechanisms (Montague 1960; Katz and Fodor 1963; Pustejovsky 
1995; Asher 2011), but these have been only partially successful (Fodor et al. 1980; Murphy 2002; Boleda 
and Erk 2015). In AMORE, I develop a model that, like formal semantics approaches, can individuate and 
identify referents, but also associate them with rich descriptive content. 
Distributional semantics (see Turney and Pantel 2010 for an overview) is based on the hypothesis that the 
meaning of a linguistic expression can be induced from the contexts in which it is used (Firth 1957; Harris 
1968; with possible roots in Wittgenstein 1953), because related expressions, such as “box” and “package”, 
are used in similar contexts (“open the _”, “a light _”). This provides an operational learning procedure for 
semantic representations that has been profitably used in computational semantics.  

Distributional representations for meaning are vectors (essentially lists of numbers; they can also be more 
complex algebraic objects such as matrices and tensors). Vector values are abstractions on the contexts of 
use, extracted from large amounts of natural language data such as web text. The semantic information is 
distributed across all the dimensions of the vector, and it is expressed in the form of continuous values, 
which allows for rich and nuanced information to be encoded. The collection of linguistic elements, for 
instance words in a lexicon, forms a vector space or semantic space, in which semantic relations can be 
modeled as geometric relations. Thus, in semantic space, “box” is near to “package”, and far from unrelated 
words such as “smile”. In recent years, distributional models have been extended to handle the semantic 
composition of words into phrases and sentences (Mitchell and Lapata 2010, Socher et al. 2013, Baroni et al. 
2014a). Although these models still do not account for the full range of composition phenomena that have 
been examined in formal semantics, they do encode relevant semantic information, as shown by their success 
in demanding semantic tasks such as predicting sentence similarity (Marelli et al. 2014).   

Current distributional models do not have a notion of referent, of a language-external entity that semantic 
representations are anchored to. This has adverse effects, such as the difficulty in distinguishing between 
general semantic relatedness and entailment discussed above. Two paths to overcome these difficulties have 
been recently explored, in both of which I have been involved: (1) Keep the logic framework and enrich it 
with distributional knowledge (Beltagy et al. 2013; Lewis and Steedman 2013); (2) Keep the distributional 
framework and anchor it in the external world (Gupta et al. 2015; Herbelot and Vecchi 2015). In AMORE I 
pursue approach (2). 

 Another research direction in which distributional semantics is advancing, and in which I have also 
participated, is to connect perceptual information to linguistic representations, e.g. by using visual cues 
extracted from images to improve the representation of color terms (Bruni et al. 2012). Distributional 
semantics provides an integrated representation of information from different modalities: linguistic 
(extracted from text), visual (from images), acoustic (from audio files), etc. This strand of research, like 
AMORE, addresses the issue of grounding symbolic language in external reality (Searle 1980; Harnad 
1990), though not specifically reference. AMORE makes use of advances in this area to model linguistic 
reference to objects apprehended through perception, matching noun phrases containing visual attributes 
(“the white cat”) with entities depicted in an image (WP 4.1). It also enables it to integrate information 
coming from perceptual and linguistic cues: For instance, we expect the model to match “the sociable 
white cat” to an image of a white cat for which the only linguistic information we have given is “is sociable” 
(WP 4.2). In the project we focus on visual information because (1) visual information is crucial for concrete 
entities (the domain of the project), (2) Computer Vision is mature enough that incorporating it into our 
computational model of reference is feasible (see below).  
Neural networks, especially in the variant called deep learning (LeCun et al. 2015), are a Machine Learning 
algorithm developed in the last century (Rosenblatt 1958 and subsequent work) that is receiving renewed 
interest due to significant breakthroughs in many Artificial Intelligence areas, such as Computer Vision 
(Krizhevsky et al. 2012), Speech Processing (Hinton et al. 2012), and Computational Linguistics (Mikolov et 
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al. 2013). Machine Learning algorithms are used to learn computational models from data to perform tasks 
that can be applied to new, unseen cases (Witten and Frank 2005). Learning consists in setting the values of 
some pre-specified parameters in the learning algorithm. Traditional supervised Machine Learning methods 
needed careful, expert-driven extraction of features, that is, informative elements, from the data,. Neural 
networks, in contrast, belong to the representation learning paradigm that seeks to automatically induce the 
right features from the data. Deep neural networks can learn very complex functions from input (say, the 
pixels of an image) to output (e.g. the name of the object it depicts) by composing successive transformations 
of the representations (see Nielsen 2015 and LeCun et al. 2015 for algorithmic details). These 
transformations are continuous in nature, which allows for them to be learned by using advanced 
optimization techniques; however, they can approximate discrete operations (see discussion of the operations 
on the entity representations in Section a.3). 

Distributional semantics has recently started using neural networks as a powerful tool to learn its semantic 
representations, consistently improving results across a wide range of semantic benchmarks (Baroni et al. 
2014b). Recall that in distributional semantics the representations are based on abstraction operations on 
linguistic contexts. There is a wide range of possible abstractions; the main advantage of neural networks is 
that the specific operation to perform on the contexts is based on a prediction task. This way, vectors are 
initialized randomly, and they are iteratively refined as the model goes through the data and improves its 
predictions. Linguistic prediction tasks that are general enough lead to general-purpose semantic 
representations; for instance, Mikolov et al. (2013) used language modeling, the task of predicting words in a 
sentence (e.g. “She lifted her cup and took a _”). The result is one of the highest quality distributional 
lexicons available today. Neural networks also facilitate the use of transfer learning, or transferring 
knowledge from one learning task to another, by taking advantage of the features they automatically induce. 
For instance, Weiss et al. (2015) use Mikolov et al. (2013)’s word vectors to initialize the word 
representations for a syntactic task. Given that syntactic datasets are small, this gives the model a good start 
(in other approaches, all the knowledge needs to be learned from scratch for each new task). I will exploit 
similar initialization strategies in AMORE. More importantly, neural networks will play a key role in making 
it possible to produce distributed representations of the entities that we refer to via language, the endeavour I 
will pursue in AMORE.  

Specifically, AMORE adopts Recurrent Neural Networks (RNNs; Elman 1990), which are especially 
suited for linguistic tasks because they adequately handle sequential input. In RNNs, when processing a 
given word, the network uses the representation it has built of the previous discourse. For instance, given the 
sentences in (1) above, the network can use the representation built for “The” when predicting “man”, “The 
man” when predicting “lifted”, etc. In the process of learning to predict the following word in the training 
corpus (or other distributional tasks), a RNN will induce a vector-based representation of a word (known as 
an embedding in the neural network literature) that is substantially analogous to the word vectors constructed 
with traditional distributional semantic methods. Thus, RNNs can be naturally seen as extensions of word-
based distributional semantic approaches that also account for semantic and syntactic properties of broader 
constituents. 

Note in particular that the discourse representation that a RNN sequentially builds is the result of a simple 
form of semantic composition (Li et al. 2015). Linguistic structures, however, are not only sequential but 
also hierarchical; accordingly, they are often represented using syntactic trees (Chomsky 1957). RNNs, 
especially in their LSTM variant (Hochreiter and Schmidhuber 1997), can partially model hierarchical 
structures and thus syntax, through a gating mechanism that allows different elements in the previous 
discourse to have different effects on the representations at different times, resulting in better handling of 
long-distance dependencies (in the remainder of this proposal, when we refer to RNNs, we always imply the 
LSTM variant). Explicitly hierarchical models, Recursive Neural Networks, are also being exploited for 
language (Socher et al. 2013, Le and Zuidema 2014), but they do not at present show consistent 
improvements over RNNs (Li et al. 2015) and the latter are easier to integrate with the dynamic memory 
mechanisms that we will discuss next.  

A RNN induces a single continuous representation of the semantic information active at each time step in 
the unfolding discourse, with nothing akin to the distinct variables used in formal semantics to represent 
entities. The crucial technical innovation of AMORE will be to extend RNNs with a dynamic memory that 
the network can learn to manipulate, storing distinct representations in it, and retrieving them when needed. 
This allows us to emulate discrete operations on entity representations in a continuous setup. The 
specific mechanisms build on recent work that uses continuous approximations to discrete operations such as 
storage and retrieval, in order to integrate them in architectures that, being fully differentiable, can learn from 
data through effective methods (e.g., Joulin and Mikolov 2015, Sukhbaatar et al. 2015, Bahdanau et al. 
2015). 
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Computational Linguistics and Artificial Intelligence tasks and resources. The Computational Linguistics 
and Artificial Intelligence communities have tackled tasks that are related to the goals of AMORE, and 
developed resources that will be useful for the project. 
•   Coreference or anaphora resolution (Poesio et al. in press) involves identifying linguistic expressions 

that have the same referent. It has often been operationalized as follows: Given a text, (1) identify all the 
expressions with referential import (“mentions”); and (2) determine which of them have the same 
referent. The full coreference task involves a number of issues that are not central for the goals of this 
project, such as being able to explicitly recognize all the mentions of a given referent. However, we will 
capitalize on the theoretical and empirical evidence gathered in this area of research, and use it to 
evaluate the model in an extrinsic task. In particular, we will test our model in a subset of OntoNotes, a 
corpus annotated for coreference (Hovy et al. 2006).  

•   A number of related tasks address the ability of computational systems to understand written text 
(Machine Comprehension of Text, Richardson et al. 2013). Neural network systems are starting to be 
tested on this kind of task, and large data sets are being developed (Hermann et al. 2015; Hill et al. 
2015). Question Answering (Voorhees 1999) involves asking systems to answer questions in natural 
language, which can be generic (“Where is the Taj Mahal?”) or about a specific document, when applied 
to text understanding. AMORE aims at connecting linguistic expressions with referents, and one of our 
experiments (WP3.1) can be framed as a language-understanding question answering task regarding 
entities in text. Because it is a novel task, no existing resource is adequate to address it. By partially 
reusing existing methodology (Richardson et al. 2013), AMORE will create a comprehensive dataset for 
this task that will be very useful for the community. 

•   Object recognition is a task in Computer Vision that asks systems to identify and label objects in images 
(“cat”, “plant”, etc.; Krizhevsky et al. 2012). Recent work extends the task to recognizing attributes 
(such as white for cat; Russakovsky and Li 2012), and also addresses visual Question Answering (Antol 
et al. 2015). The state of the art in object recognition is mature enough that we can integrate an image 
processing component to model linguistic reference to objects depicted in images (WP4). We will also 
exploit existing Computer Vision data sets in our experiments: (1) a data set with images of single 
objects annotated with visual attributes (Russakowski and Li 2012; WP4.1); (2) the ReferItGame dataset, 
with human-generated referring expressions for objects in images (Kazemzadeh et al. 2014; WP4.2); (3) 
and possibly existing caption datasets (Young et al. 2014; Chen et al. 2015) for transfer learning. We will 
also reuse part of the methodology used for the ReferItGame dataset for the WP3.1 dataset. 

a.3 The model 
The AMORE model is essentially a distributional version of Kamp (2015), based on Discourse 

Representation Theory, which is one of the most comprehensive theoretical models of the interpretation of 
noun phrases to date. Kamp’s model has four main components, accounting for: (1) generic information 
about the world, such as the fact that books have covers (Kgen); (2) information about the immediate 
extralinguistic environment (Kenv); (3) the current linguistic discourse (Kdis); (4) the entities we talk about 
(Kenc, for “encyclopedic”). Interestingly, Kamp explicitly declares Kgen “off-limits” for his model (Kamp 
2015, p. 54), consistent with the fact that it concerns descriptive content.  

Figure 1 depicts the model to be developed in the project. Like Kamp’s, it is a model of language 
interpretation (as opposed to generation), and it simulates the situation in which a competent hearer is 
processing an ongoing discourse.1 It has four main components, labeled with letters in the figure. The first 
component (A) processes the linguistic input, and it includes a distributional word lexicon (induced during 
model training) and a recurrent composition layer;2 component (B) represents the perceptual environment; 
and component (C) handles the entities in the discourse and the environment. The fourth component (D) 
integrates visual and linguistic information and transfers information to and from the entity library. The Kgen 
component of Kamp’s model is operationalized in AMORE as the corpus-induced distributional lexicon, 
because distributional representations have been shown to account for generic information (Baroni and Lenci 
2010, a.o.). Kenv and Kenc correspond to our environment component and entity library, respectively. Both in 
Kamp’s and in our model, the entity library contains representations for previously known entities (if I say to 
my mother “Aunt Lina came today”, she can access her long-term entity representation for her sister) as well 
as those newly introduced in a discourse (“I just saw a bird”). This project focuses mainly on newly 

                                                
1 The model only encodes the contents of what is being said, without keeping track of what was said when, and so does 
not does not cover aspects that are sensitive to information structure (Vallduví and Engdahl 1996). This is left to future 
work. 
2 Layers are the successive representations used by the network: Networks go from input to ouput through a series of 
hidden layers that correspond to intermediate, progressively more abstract representations. 
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introduced entities (Work Packages 3.1, 4.1 and 4.2), but one of the experiments is targeted at previously 
known entities (WP 3.2). The information in Kdis is distributed in AMORE between the composition module, 
the integration module, and the entity library.  

The model is implemented as a Recurrent 
Neural Network (with standard LSTM gating 
mechanisms to keep track of longer 
dependencies), extended by a dynamic memory 
storing the entity library and an additional 
hidden layer for the integration component. The 
environment component is a neural network 
itself (in practice, we will use the pre-trained 
convolutional neural network of Krizhevsky et 
al. 2012). Our network processes one piece of 
input at a time (e.g., each word in a text, each 
image in a sequence of images; the exact timing 
in which images and words are presented will 
depend on the task). The operations mapping 
the visual and linguistic input to the integration 
layer are standard matrix multiplications 
followed by nonlinearities (Nielsen 2015). The 

main novelty of the model is the use of the dynamic memory for the entity library and the mechanisms to 
create, update, and retrieve distributional entity representations. Without the entity library, the integration 
layer would have to represent multiple entities all squashed into the same distributed representations, 
whereas we need discrete pointers to make sense of phenomena such as anaphora. The mechanisms we 
propose are inspired by very recent progress in neural networks, enabling them to manipulate external 
memories and retrieve/focus on specific memory elements while maintaining a fully differentiable 
architecture, i.e., one that can learn from data using standard gradient-based techniques (e.g., Joulin and 
Mikolov 2015, Sukhbaatar et al. 2015, Bahdanau et al. 2015). Figure 2 zooms in on this part of the model, 
marked with a red ellipse in Figure 1. In Figure 2, continuous lines again denote matrix multiplications 
followed by non-linearities, whereas dashed lines indicate the input/output flow from the modules described 
in detail below (what follows is just one possible implementation of the relevant mechanisms, and AMORE 
will explore several variants). 

The entity library is continuously modified as the input is 
processed. We start from vector it, produced by the integration 
component by collating information from the current linguistic 
input, the visual input (if any), and the information in the entity 
library right before the current input was read. The modification to 
the entity library is carried out in two steps: First, INSERT adds an 
element to the library, if necessary; second, UPDATE updates the 
whole entity library with the new information. The INSERT 
module, inspired by Joulin and Mikolov's (2015) Stack RNN, uses 
two  pieces of information: A vector n, that should encode the new 
relevant information that the input added to the  discourse, and a 
“controller” scalar value a ranging between 0 and 1 that will 
determine the effect of the new information on the entity library.3 

INSERT takes as input a, n and the entity library in its current state (E t-1)4 and decides whether to “softly” 
insert n as a new entity representation at the top of the library, shifting all other vectors by one position, 
according to Equations (1) and (2) below. As a approaches 1, the operation converges to discrete insertion of 
a new element, whereas a approaching 0 means that the entity library will not be changed (note that, as 
discussed above, this and the next operations approximate discrete actions by continuous means to make 
learning possible).  

INSERT builds a new, temporary version of the entity library (Ê). UPDATE uses Ê and (again) vector n 
to update the library, arriving at the final representation of the library at the current time step, Et. The 
UPDATE module decides how much to update each entity vector with the new information in n. A 

                                                
3 Scalar a is sigmoid-transformed so that it ranges between 0 and 1. 
4 Et-1 is a matrix with the entity vectors as columns, denoted by subscripts in the equations below. 

Et-1

it a
n INSERT UPDATE

EXTRACT

Ê

Et

bt
Figure 2. Operations on the entity library. 

Figure 1. The AMORE model. 



Boleda Part B2 AMORE 
 

 7 

probability vector p the size of the library is first obtained through Equation (3).5 This will result in larger 
probability values for entity vectors that are similar to n (ideally, the probability mass should be largely 
concentrated on a single vector, referring to the entity we are talking about). The probabilities are then used 
to weight how much of the new information should be added to each entity vector in the updated library, 
according to Equation (4).6 Finally, an EXTRACT operation produces a vector bt (for “background”) 
summarizing the information in the entity library, which will be used in the next input reading step as part of 
the information fed to the integration layer. EXTRACT is inspired by differentiable retrieval mechanisms 
such as those in Sukhbaatar et al. (2015), and produces bt by summing across information in the current 
entity vectors while giving more weight to those that seem currently more relevant (relevance is 
operationalized as similarity to it); see equations (5) and (6). This allows the library to feed back to the 
integration component. The same mechanisms operate on visual input as well (recall that the integration 
component encodes both linguistic and visual information). 

(1)   ê1 = a n + (1-a) 𝐞"#$" 
(2)   êi = a 𝐞%$"#$"

 + (1-a) 𝐞&#$" (for i>1) 
(3)   p=(softmax(nTÊ))T 
(4)   𝐞%#  = tanh(êi + pi n) 
(5)   q=(softmax(itTEt))T 
(6)   bt=Etq 

For some intuition on how the model might work, consider input “a bird”. At time 1, the network 
processes the indefinite article “a” and the entity library is empty. INSERT should create a new entity, 
because the network can be expected to learn to associate indefinite determiners, which introduce new 
discourse referents, with a high value for a. UPDATE should not touch the rest of the entity library, because 
determiners do not introduce any descriptive content. At time 2, when processing “bird”, INSERT should not 
create a new entity, but UPDATE should modify the previously created one, because nouns contribute 
descriptive content. If the phrase occurs within a discourse, UPDATE can also modify any other entity 
representations that may be related to the “bird” entity, either explicitly in the input or through implicit 
connections (e.g., encoded in the distributional lexicon). 

The architecture just specified needs appropriate data to learn from. Note in particular that the entity 
library will not be manually encoded, but it will have to be constructed by the model motivated by the tasks 
it is faced with. The model is trained on tasks that encourage it to create and access entity representations 
(see WPs 3 and 4 below). For instance, in WP3.1 the task is to predict the name of the character in a story 
that corresponds to a given noun phrase: Given a story with four characters, Ann, Bob, Tom, and Mary, that 
starts “Bob is a Law student, but Ann studies Medicine”, the system should output “Ann” in response to 
“The Medicine student”. The specific implementation of the output-producing mechanism depends on the 
task (see Section b.2). 

The AMORE model is able to keep entities distinct (they correspond to different vectors in the library) 
while at the same time providing rich internal distributed representations for them, since the 
descriptive content and perceptual features associated with the entity are stored in its distributed 
representation. We can thus capitalize on the power of distributional semantics to handle different linguistic 
expressions that are semantically related (“box” - “package”) and integrate linguistic and perceptual 
information (linking noun phrases like “the white cat” to entities depicted in images); at the same time, we 
also emulate symbolic variables by letting the network write and read from the entity library. This is a highly 
novel approach to entity representation and the first linguistically motivated use of neural networks with 
dynamic memory structures.  

a.4 High-risk high-gain nature of the project and feasibility 
AMORE is a radically new approach to reference with high-gain potential, because it provides a unified, 

scalable way to deal with the continuous and discrete aspects of reference, keeping track of distinct entities 
while providing rich conceptual representations for them. It is also high-risk, specifically with respect to the 
following points: (1) The model is completely data-induced, with little control (beyond specifying its 
architecture) over what each component does. This is what makes it powerful, since it learns the 
representations it needs to solve the task at hand. However, this also makes it risky. In particular, there is no 
guarantee that the entity library will effectively store entity representations, as opposed to some other type of 

                                                
5 The softmax function returns a probability distribution. The T superscript here and below denotes transposition 
operations that are needed for the dimensionalities of different vectors and matrices to match.  
6 The tanh function insures that entity vectors are kept within the same range. 
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information. (2) While learned continuous distributed representations have been shown to be very effective 
representations of both words and more complex linguistic expressions, there is no significant previous 
experience in encoding discourse entities as vectors (Kalchbrenner and Blunsom 2013 and Ji and Eisenstein 
2015 apply neural networks to discourse tasks, but they do not use distributional entity representations like 
ours).  

Given its inherent high-risk nature, I have carefully designed the project so as to maximize feasibility: (1) 
Given that the reference problem is huge, I have selected a well-defined domain with a solid theoretical 
framework to rely on: Reference to concrete entities (excluding, for instance, abstract entities and events), 
focusing on single-entity denoting noun phrases (excluding, for instance, plurals and group nouns); (2) I have 
designed tasks that will encourage the model to build entity representations and to match them with the 
representations obtained from the other components; (3) In the model, I am using components that have 
previously been shown to work for tasks related to AMORE, in my research as well as that of others; (4) The 
experiments include simpler and more complex challenges, and will be informative even in case of partial 
success; (5) I will do extensive analysis at each point of the project to address potential shortcomings, 
reverting to more controlled architectures or tasks if necessary. For instance, the INSERT operation could be 
enabled only when encountering noun phrases, which can be identified with standard Computational 
Linguistics tools; or more effort could be devoted to the controlled domain task in WP4.1 if the task proves 
too hard to move to the open domain (see Section b.2). 

Finally, even if the AMORE model itself fails, because the project poses challenges to the community 
that need solving and operationalizes them in a way that is at the limits of the state of the art, its results (data 
sets, modeling results) will be very valuable for the community. For instance, if the entity library stores other 
information, it could be revealing to analyze what it stores; in my previous experience, by using new tools in 
semantics I have encountered phenomena that traditional linguistic methods had not uncovered (to give just 
one example, a computational study, Boleda et al. 2013, led to the discovery of differentiated referential and 
conceptual effects in semantic composition, McNally and Boleda 2015). Similarly, if the distributed 
approach to entity representation does not work, it will be very useful for the AI community to know why 
and how it compares to symbolic alternatives.  

My previous research experience also supports the feasibility of the project. I am in a privileged position 
to propose a project building on formal and distributional semantics, since I have contributed top research in 
both distributional semantics (Boleda et al. 2004, Mayol et al. 2005, Boleda et al. 2007, Boleda et al. 
2012b,c,d, Bruni et al. 2012, Boleda et al. 2013, Roller et al. 2014, Boleda and Erk 2015, Gupta et al. 2015) 
and formal semantics (McNally and Boleda 2004, Boleda et al. 2012a, Arsenijević et al. 2014, McNally and 
Boleda 2015). I have carried out extensive research on specific topics that are relevant for AMORE, such as 
adjectival and nominal semantics and, recently (as the PI of a Marie Curie project), on comparing symbolic 
and distributed semantic representations, integrating visual and linguistic information, and extracting 
referential information from distributional vectors. I have also shown my leadership capabilities, for instance 
encouraging the cross-fertilization between formal and distributional semantics as a guest editor for a special 
issue on the topic in the top journal in Computational Linguistics and leading the development of 
computational linguistic resources (see CV). 

a.5 Expected impact 
AMORE is a highly interdisciplinary project that will bring Linguistics, Computational Linguistics, and 

Artificial Intelligence forward. The proposed model handles reference, as does formal semantics, but in a 
framework that can adequately deal with descriptive content, integrates perceptual and linguistic 
information, and can learn from data and so has a broad coverage. These advances will contribute to our 
scientific understanding of language, a defining trait of the human species. 

The project also substantially contributes to the far-reaching, decades-long debate in Artificial 
Intelligence and Cognitive Science over symbolic vs. distributed approaches to cognition (Smolensky 1987, 
Fodor and Pylyshyn 1988, Churchland 1998, Fodor and Lepore 1999, LeCun et al. 2015, among many 
others) with a proposal that synthesizes strong aspects of both approaches. The specific proposal will impact 
Artificial Intelligence as the first linguistically interesting application of Artificial Intelligence algorithms 
that have until now been used either for toy tasks (Joulin and Mikolov 2015) or without a clear linguistic 
motivation (Weston et al. 2014). From a more applied perspective, although the project itself focuses on 
fundamental research, it paves the way for technologies that will enable machines to talk to us in situated 
applications.  

AMORE will also have a tremendous impact on my own research career. I will be joining the Universitat 
Pompeu Fabra in the fall of 2016 as an assistant professor in a tenure-track position. The project will enable 
me to create my own research group and will represent a key step on the path to a permanent position. In 
turn, I will significantly contribute to the already strong profile of the University in Linguistics, Artificial 
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Intelligence, and Cognitive Science, and to the European science space more generally: In addition to the 
project’s results, AMORE will open up future research and funding opportunities across the solid network I 
have established up to now, encompassing Italy, Germany, and the US, with stable collaborations on topics 
related to the present project (see CV). 

Section b. Methodology 

b.1 Methodological framework 
AMORE will follow the methodology of empirical Computational Linguistics, which uses Machine 

Learning methods to learn models from data that can be applied to new, unseen cases (Manning and Schütze 
1999). We operationalize each experiment (see Work Packages 3 and 4 below) as a Machine Learning task. 
For instance, in WP3.1, given a story with four characters, Ann, Bob, Tom, and Dean, that starts “Bob is a 
Law student, but Ann studies Medicine (…)”, the system has to identify the character referred to by the 
phrase “the Medicine student” and give its name as output, “Ann”. Our model is supervised: It learns from 
examples of correct responses for story / noun phrase pairs. Learning consists in setting the values of some 
pre-specified parameters. These parameters are induced from a training set, further adjusted in a 
development set, and evaluated on a separate test set to ensure that the model is indeed able to generalize to 
unseen data. In our example, the system is trained on a set of stories, phrases, and character names, and 
tested on a separate set of stories and phrases. We will use standard evaluation metrics such as accuracy 
(percentage of correct responses over the total) to assess the quality of our model.  

We implement the architecture of our model as a neural network (see Section a.2). The parameters to be 
learned from data are essentially the ones that determine the successive transformations of the 
representations from input to output through each of the layers in the network (see Nielsen 2015 and LeCun 
et al. 2015 for details), the operations manipulating the entity library, and the entity representations (see 
Section a.3). Other parameters, such as the dimensionality of the distributed representations, will be tuned on 
the development set. Parameter values will be initialized either randomly or using transfer learning, 
providing high-quality initial representations for linguistic and visual input, which will be adapted to the 
reference phenomenon by training on the specific tasks of the project (more details in the workplan 
description, Section b.2). As standard in Machine Learning, as part of the experiements we will also 
implement baseline architectures to asses the contributions of our system and compare to alternative 
approaches from the literature.  

For the construction of the dataset in WP3.1, we will use crowdsourcing, a method that enables 
researchers to elicit data from paid volunteers in the online community, and that is widely used for the 
construction of Computational Linguistic datasets (Marelli et al. 2014, Bowman et al. 2015, a. o.; for more 
information and ethical aspects, see the Ethical Self-assessment Annex).  

For data and error analysis, we will use statistical methods as well as visualization techniques, including 
model ablation (leaving one of the components of the model out, to see its impact on the overall 
performance), evaluations on focused subsets (e.g. entities belonging to different categories, like people or 
locations), and visualizations of distributed representations such as heat maps or 2D and 3D projections (e.g., 
van der Maaten and Hinton 2008). A further crucial component of data and error analysis, both for data set 
construction and modeling, will be the manual examination of samples. We will iteratively refine data set 
construction based on manual inspection of datapoints produced with each improved design. 

b.2 Workplan 
Timeline 

 M6 M12 M18 M24 M30 M36 M42 M48 M54 M60 
WP1: Release of project output and infrastructure 

          WP1.1: Computational infrastructure           
WP1.2: Release of code and data 

     
     

WP2: Model development 
          WP2.1: Model definition and implementation           

WP2.2: Task adaptation           
WP3: Linguistic knowledge-based reference 

          WP3.1: Reference to newly-introduced entities 
 

     
    WP3.2: Long-term modeling of entities 

      
   

 WP4: Perception-based and integrated reference 
          WP4.1: Controlled domain 
 

    
     WP4.2: Open domain 

     
    

 WP5: Management and dissemination 
          WP5.1: Project management 
          WP5.2: Dissemination 
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Work Package 1: Data and infrastructure [Months 1-60] 
Goals: Set up computational infrastructure; release research output for replication and further research. 
WP1 Activity 1: Computational infrastructure. (Lead: PI; support from university ICT staff) [Months 1-60] 
In order to run the intensive computations required by the project (WPs 3 and 4), we will use project funds to 
acquire at least five GPUs (Graphics Processing Units). Because of their highly parallel structure, the latter 
are much more efficient than CPUs in implementing algorithms, such as neural networks, involving 
massively parallel computation. This activity runs through the whole project to address any potential 
infrastructure issues. 
WP2 Activity 2: Release of code and data. (Lead: PI; participants: everybody) [Months 31-60] 
This Activity ensures that all the research output is made publicly available in a properly documented form, 
to enable replication of published results and further research. The code of the model will be posted to public 
online repositories such as GitHub, and pre-trained models and datasets will be available for download from 
the project’s website (see WP 5) upon publication of the relevant results. The final versions of all of the 
digital output will also be made available through the university’s e-repository, that ensures data 
preservation. 
Milestones and deliverables 
M1.1.1 GPUs up and running M6 
M1.1.2-4 Infrastructure review M24,36,48 
M1.2.1-2 Code cleanup and review M29,53 
M1.2.9 Digital data review M54 
D1.1.1 Computational infrastructure documentation M9 
D1.2.1-4 Public pre-trained model and dataset release for WP 4.1, 3.1, 3.2, 4.2 M36,42,60,60 
D1.2.5-6 Public code release M30,54 
D1.2.7 Digital output release in university e-repository M60 

Work Package 2: Model development [Months 1-60] 
Goals: develop and implement the model; assess its scientific implications.7 
WP2 Activity 1: Model definition and implementation. (Lead: PI; participants: L. McNally, post-doc 1) 
[Months 1-54] 
We develop the formal definition of the model and its implementation as a neural network. This Activity 
lasts until month 54 to adjust the model according to the experience gathered in the project and address any 
issues that may arise. We will start from the proposal in Section a.3, and experiment with alternative 
architectures. We will also explore general initialization strategies, such as seeding the distributional lexicon 
(component (A) in Figure 1 above) with high-quality embeddings. For WP 3 (linguistic and visual input), we 
will use pre-trained multimodal word representations combining linguistic and visual information (Lazaridou 
et al. 2015) and a pre-trained convolutional neural network (Krizhevsky et al. 2012) to map images to the 
visual layer of the model. See WP3 and WP4 for other, task-dependent transfer learning strategies. 
WP2 Activity 2: Task adaptation (Lead: PI; participants: post-doc 1) [Months 12-54] 
We define how the network is adapted to the input and target output required by each task. For instance, for 
the “Ann” task in WP 3.1, the required output is the name of the character (e.g. “Ann”) referred to by a noun 
phrase (e.g., “The Medicine student”). The network first processes the whole story one word at a time and 
creates an entity library En (where n indexes the last word in the story). At query time, the network processes 
the definite description of interest also one word at a time, with vector id corresponding to the state of the 
integrated layer (see Fig. 1) after the description has been read. The most related entity in the entity library is 
then “softly” retrieved by first measuring similarity of all entity vectors to id (Equation (7)) and then using 
the resulting normalized similarities s as weights in a weighted sum of the entity vectors that produces the 
“relevant” vector r (Equation (8)). Finally, normalized similarities of r with the vectors representing the 
candidate names in the distributional lexicon layer (inside component A in Fig. 1) are returned as guesses 
about the name the target description refers to, via Equation (9), where R embeds r in the lexicon layer 
space, and the Wnames columns store the candidate name representations. 

(7)   s=(softmax(id
TEn))T 

(8)   r = Ens 
(9)   g=(softmax((Rr)TWnames) 

                                                
7 This is not assigned a specific Activity because it will be carried out continuously. 
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During training, the model guesses are compared to the correct response, and the model parameters are 
consequently adjusted using standard error backpropagation and gradient descent techniques (Nielsen 2015). 
The architecture for the experiments with images (WP 4) is analogous, except that the input includes image 
representations presented alone or in parallel with the last word in the corresponding verbal descriptions. In 
order to identify characters in movie scripts (WP 3.2), we will pre-process the scripts so that character names 
follow their lines, and we will let the network, at each step, generate probability distributions over the next 
word through a softmax layer on top of i, as in a standard language modeling task. However, in our 
evaluation we will focus on the ability of the model to produce the character names, rather than all words in 
the corpus. In this case, the entity library will contribute to the task through the summary vector b 
influencing i (see a.3). 
Milestones and deliverables 
M2.1.1-3 Model defined in iteratively improved versions M9,30,42 
M2.1.4-6 Model implemented in iteratively improved versions M18,36,48 
M2.2.1-2 Model adapted to WP3.1, WP3.2 tasks M18,36 
M2.2.3-4 Model adapted to WP4 tasks (perception only, integrated) M21,33 
D2.1.1-3 Model definition and implementation report M54 
D2.2.4-6 Internal release of code M19,37,49 

Work Package 3: Linguistic knowledge-based reference [Months 7-54] 
Goals: test the model on reference to entities based on knowledge gathered from the previous linguistic 
discourse; assess the ability of the model to handle entity representations for entities that are newly 
introduced in a discourse and previously known entities. 
WP3 Activity 1: Reference to previously-unknown entities (Lead: PI; participants: post-doc 2, PhD student 
1) [Months 7-36] 
The first experiment concerns reference to previously unknown entities introduced in a discourse: Their 
dynamic introduction to the entity library as they are mentioned, the update of their representation based on 
the linguistic information provided the discourse, and their retrieval based on the task. The task we will use 
for this experiment is the “Ann” task introduced above. For the goals of the experiment (dynamic 
initialization and characterization of distinct entities), it is important that the entities not be previously known 
and that several entities are introduced within a limited discourse, so we cannot use already available 
narrative text: News and Wikipedia articles typically concern entities in the public domain (Obama, England, 
etc.); novels and even short stories are too long; and there are not enough freely available, short enough 
narrative units for our purposes. Therefore, we develop our own dataset, as follows. We will first ask human 
subjects (via crowdsourcing) to create stories using four, randomly selected different proper nouns. The pool 
of proper nouns will be harvested from publicly available sources such as Wikipedia, with filters to ensure 
that they do not refer to unique public entities (such as Obama or England). Once we have the stories, we 
will obtain referring expressions through an online game that resembles the popular Taboo. In the game, two 
players are randomly paired; the system asks player A to produce a definite description for one of the 
characters (say, “the Medicine student”); Player B has to guess which of the four characters it refers to (in 
the example, “Ann”). Player A is not allowed to use more than a limited number of the words that appear in 
the story, to avoid too literal repetitions of expressions. Note that we are using methodology that has been 
shown to work before for the construction of related data sets: For the MCTest data set, subjects were asked 
to write short stories for a more general Machine Comprehension of Text task (Richardson), and the 
ReferItGame data set mentioned above used a similar game to produce referring expressions for objects in 
images (Kazemzadeh et al. 2014). Based on these previous experiences, a realistic goal is to gather a dataset 
containing 160,000 referring expressions for entities in 40,000 stories, which will facilitate empirical 
approaches to reference and will be very useful for creating further resources for related tasks such as 
coreference resolution, Machine Comprehension of Text, and Question Answering. For instance, the MCTest 
consists of only 500 stories and 2,000 reading comprehension questions about those stories. The most 
resource-consuming part is building the stories, which is handled by our project. It will thus be feasible for 
other researchers to extend MCTest by producing reading comprehension questions for the stories in our 
dataset. 

We will consider the following existing data sets for related tasks to pre-train the model (transfer 
learning) and/or extrinsic evaluation: the OntoNotes corpus for coreference resolution (Hovy et al. 2006); the 
DeepMind data set (Hermann et al. 2015) containing news articles with an associated fill-in-the-blank task 
about entities; and the Children’s Book Test dataset (Hill et al. 2015) providing another fill-in-the-blank task 
for proper nouns, common nouns, verbs, and prepositions.  
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WP3 Activity 2: Long-term modeling of entities (Lead: PI; participants: post-doc 2, PhD student 1) [Months 
37-54] 
The previous experiment tests the construction of newly-introduced entity representations. Here we test the 
ability of the model to handle previously known entities (recall the “Aunt Lina” example from Section a.3), 
through a task that thoroughly probes the entity library across time. The task is to associate each utterance in 
the second part of a movie script with the character that produced it, based on the entity library built in the 
first part. We operationalize it as a language modeling task, where the output is a probability distribution 
over the whole vocabulary, and evaluate only on the production of character names. We will give the system 
the first part of each movie as input (so it constructs the entity representations) and test on the second part (so 
that it updates it and retrieves information from it). The task has the advantage that we can produce a large 
amount of training data automatically, by collecting and processing freely available movie scripts from 
dedicated sites such as the Internet Movie Screenplay Database.8  
Milestones and deliverables 
M3.1.1 Design for story and noun phrase collection ready M8 
M3.1.2 Pilot data set study done M11 
M3.1.3 “Ann” data set finished M20 
M3.1.4 Reference to newly-introduced entities experiments and analyses done M32 
M3.2.1 Data set of movie scripts finished M36 
M3.2.2 Long-term modeling of entities experiments and analyses done M48 
D3.1.1 “Ann” data collection protocol reports M21 
D3.1.2 Internal data set release M22 
D3.1.3 Report for reference to newly-introduced entities experiments M36 
D3.2.1 Movie script dataset creation protocol report M37 
D3.2.2 Internal movie script dataset release M38 
D3.2.3 Report for long-term modeling of entities experiments M54 

Work Package 4: Perception-based and integrated reference [Months 7-54]  
Goal: test the model on reference using perceptual (visual) information, on its own or integrated with 
previous knowledge acquired through language. 
The experiments in this WP concern the identification of an entity depicted in an image through a noun 
phrase with descriptive content (e.g., using “the white cat” to identify a white cat in a picture). Because this 
is an ambitious task that requires the integration of all the components in the model, we carry out the 
experiments in two phases with a more controlled but less natural setup (Activity 1) and a more natural but 
also computationally more difficult setup (Activity 2), respectively. 
WP4 Activity 1: Controlled domain (Lead: PI; participants: post-doc 3, PhD student 2) [Months 7-30] 
We test reference to entities based on visual properties only (experiment 1) and visual properties plus 
knowledge gained through language (experiment 2). In experiment 1, we will present the system with a 
sequence of images (for instance, a plant, a white cat, a black dog, a black cat, a white dog) followed by one 
noun phrase. The task of the system is to decide whether it has seen a unique entity corresponding to that 
noun phrase. In the example, the system should reply “yes” to “white cat”, “no” to “white animal” (because 
it has seen two), and “no” to “brown dog”. It is important that the images be associated not only with the 
general object category (“cat”) but also with properties (“white”), such that we can include entities of the 
same category with different properties; this should direct the model to learn entity representations, as 
opposed to object categories. Note that since multiple images (objects) are presented, and the model is tested 
after their sequential presentation, this and the following tasks are crucially probing the models’ ability to 
store representations of different entities in its library, keeping them distinct through time. 

Both the visual and the linguistic data used in this experiment are from a controlled domain, to maximize 
the feasibility of the task and the inspectability of the model. We will use a pre-existing data set 
(Russakowski and Li 2012) with 10,000 images of single objects annotated with visual attributes. The data 
set contains 25 images for each of roughly 400 different object categories (cat, plant, etc.). Each image is 
exhaustively annotated with 25 visual attributes (white, furry, metallic, etc.). We will create noun phrases 
describing each of the images from the annotation in the dataset (from attribute white and object category cat 
to the noun phrase “the white cat”). Some linguistic variation in the noun phrases will be achieved by 
automatic procedures, such as using hypernyms from an existing taxonomy (“animal” for an image of a cat; 
we will use WordNet, Miller 1995). We will then construct sequences of five images depicting different 
objects, from dissimilar to same-category (again relying on WordNet). We will reuse the images in different 

                                                
8 http://www.imsdb.com. 
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sequences and test different noun phrases, thus creating enough datapoints to train the model. If necessary, 
however, we could pre-train on noisy data and do transfer learning (see below).  

Experiment 2 integrates two sources of information about entities: Perceptual (visual) information, and 
previous knowledge coming from language. We will add further information about the entities, associating 
each image in the input with linguistic expressions (e.g., “is sociable” for the white cat image), and evaluate 
the model on noun phrases using only visual information (“white cat”), only language-based knowledge (“is 
sociable”), and an integration of the two (“sociable white cat”, “sociable animal”). The linguistic expressions 
will be harvested from available textual corpora, ensuring that they are at the same time consistent with the 
object depicted in the image (e.g., that we find instances of sentences like “my cat is sociable”) and not 
redundant (redundancy will be estimated using the distance in semantic space between the linguistic 
expression, e.g. “is sociable”, and the noun, e.g. “cat”). Highly visual linguistic expressions like “plump” 
will be avoided using a filter based on available concreteness scores for words (Turney et al. 2011), to 
prevent a potential clash in the visual and linguistic inputs, and to ensure that visual and linguistic 
information are complementary. 
WP4 Activity 2: Open domain (Lead: PI; participants: post-doc 3, PhD student 2) [Months 31-54] 
Actvity 1 uses a very restricted setup: few attributes, automatically constructed referring expressions, and 
images depicting a single object. This Activity carries out experiments analogous to those in Activity 1, but 
using naturalistic images with human-produced referring expressions. One technical difference between the 
previous version of the tasks and the current ones is that the system will get only one image as input, because 
the images depict multiple objects. We will use the ReferItGame dataset (Kazemzadeh et al. 2014), which 
contains 130,000 human-generated referring expressions for the objects in 20,000 natural images where the 
objects belong to 238 categories. The boundaries of the objects in each image have been previously 
identified. We will use the same methodology as in Activity 1 to create the linguistic expressions that we will 
associate with each object in the input image in the experiment, testing integrated reference. We will also 
experiment with pre-training the model with data automatically extracted from existing caption datasets 
(Young et al. 2014; Chen et al. 2015), which are very large but do not come with pre-identified object 
boundaries nor alignment between the referring expressions in the captions and the objects. 
Milestones and deliverables 
M4.1.1 Datasets for experiments in the controlled domain created M9,24 
M4.1.2 Experiments and analyses for the controlled domain done M21,30 
M4.2.1 Datasets for experiments in the open domain created M36,48 
M4.2.2 Experiments and analyses for the open domain done M45,54 
D4.1.1 Controlled domain data set creation protocol reports M10,25 
D4.1.2 Internal release of controlled domain datasets M11,26 
D4.1.3 Report for controlled domain experiments M30 
D4.2.1 Open domain data set creation protocol reports M37,49 
D4.2.2 Internal release of open domain datasets M38,50 
D4.2.3 Report for open domain experiments M54 

Work Package 5: Management and dissemination [Months 1-60] 
Goals: ensure good project development through planning, coordination, and dissemination activities; 
assess progress and readjust targets. 
WP 5 Activity 1: Project management (Lead: PI; participants: everybody) [Months 1-60] 
I will ensure that the project runs smoothly and communication flows, and will lead planning and 
coordination, with the support of the rest of the team. Weekly project meetings will discuss both 
organizational and scientific matters, and meetings with subsets of the team will be held as needed. A 
reading group will meet weekly or biweekly through the duration of the project to create a shared body of 
knowledge and keep up with the relevant literature, and internal tutorials regarding formal and computational 
content (including toolkits and resources) will be organized on demand. The three External Advisory Board 
members will visit after months M18, M36, and M54 to assess progress, provide feedback, and identify 
future research and funding opportunities. I will also oversee financial and administrative management, 
including ethical issues, with the support of the research service at Universitat Pompeu Fabra. 
WP 5 Activity 2: Dissemination (Lead: PI; participants: everybody) [Months 1-60] 
I and the rest of the AMORE team will ensure adequate dissemination of project results. A simple but 
informative project website will be set up in the beginning of the project, providing updated information and 
pointers to publications, code, and data. We will also use the online academic social networks of all the team 
members (e.g. ResearchGate) and the university to publish updates about the project.  
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Project results will be disseminated to the research community through publications and talks at 
international scientific events. Since Computational Linguistics is a heavily conference-oriented field, 
proceeding publications will be the main instrument for periodic updates about the project (candidate venues 
include ACL, NAACL, EACL, EMNLP, IWCS, and *SEM; as well as SALT and Sinn und Bedeutung for 
theoretical semantic results). Its main results will be published in journals: We will publish at least one 
general Computational Linguistics article on WP 4.1, one article in a journal focusing on linguistic resources 
about the data set in WP 4.1, one Artificial Intelligence journal article on WP 5, and possibly one theoretical 
linguistics journal article on the implications of our project for semantic theory and an overall summary in a 
high impact general science journal. Also, we will organize two workshops to amplify the results of the 
project and foster research on linguistic reference to entities: One in the middle of the project, co-located 
with an international conference, and one at the end of the project with invited talks by prominent 
researchers in the field, to summarize and appraise the project results and discuss future research. 

We will also disseminate our research to society through outreach activities, participating in the European 
Researchers’ Night and the EscoLab programme of the Barcelona City Council to promote science directed 
at secondary school students. Candidate activities include a demonstration of the reference game via which 
we will collect our data set and an interactive demonstration of the system on tasks WP 3.1 and WP 4.1. 
Milestones and deliverables 
M5.1.1 GPUs purchased M3 
M5.1.2 External personnel (excluding students) hired M6 
M5.1.3 Review by the university’s Ethical Committee obtained M6 
M5.1.4 PhD students selected M12 
M5.1.5-7 External consultant reviews M18,36,54 
M5.2.1,2 Project website up; all project deliverables available from website M3,60 
M5.2.3,4 Mid-project and final workshops M36,54 
M5.2.5,6 European Researchers’ Night and EscoLab outreach activities M36,48 
D5.1.1-3 Review reports M19,37,55 
D5.1.4,5 PhD theses defended M60 
D5.2.1 5 conference articles on specific modeling experiments, dataset 

construction, and linguistic issues (dates submitted) 
M26,27,36,38,51 

D5.2.2 5 journal articles: about the data set in WP 3.1, the model and experiments 
in WP 3, the model and experiments in WP 4, implications for semantic 
theory, and general scientific significance (dates submitted) 

M36,39,54,60,60 

Section c. Resources (including project costs) 

c1. Personnel involvement timeline. 
Personnel involvement timeline 

 M6 M12 M18 M24 M30 M36 M42 M48 M54 M60 
Boleda (PI)           
McNally           
Post-doc 1           
Post-doc 2           
Post-doc 3           
PhD student 1           
PhD student           
Senior staff: 
Gemma Boleda (PI, 75% dedication for 5 years) and Louise McNally (10% dedication for 5 years), an expert 
in formal semantics and long-term collaborator of mine who will participate in the formal specification of the 
model (WP2) and in assessing the implications of the project for theoretical linguistics. 
Personnel to be hired with project funds:  
Post-doc 1 (advanced expertise in neural networks) will develop and implement the model (WP2). Post-doc 
2 (expertise in distributional semantics and/or discourse) and PhD student 1 will carry out the experiments 
on linguistic knowledge-based reference (WP3). Post-doc 3 (expertise in integrating language and vision) 
and PhD student 2 will carry out the experiments on perception-based and integrated reference (WP4). The 
topics of the PhD theses will be modeling linguistic knowledge-based reference (PhD student 1) and 
reference integrating perceptual information (PhD student 2).  

gboleda
Sticky Note
Note for future applicants: I got the advice not to promise any specific publications in a proposal. I'll follow it in the future. Also, this estimate was very low in the first place, and that could have gotten me into trouble in the reviews. 
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External consultants: 
•   Katrin Erk (The University of Texas at Austin, USA): expert on both formal and distributional 

semantics. 
•   Hans Kamp (University of Stuttgart, Germany): expert on formal semantics, symbolic computational 

linguistic, and philosophy of language; creator of Discourse Representation Theory and the model of 
reference that inspires ours.  

•   Hinrich Schütze (University of Munich, Germany): expert on distributional semantics and Machine 
Learning, including neural networks. 

c2. Summary of costs 
See c.1 for personnel. Travel covers consultant visits and two conferences per year per member (including 

registration fees, which for Computational Linguistic conferences are around 500€). Equipment includes 
GPU units (see WP1.1; 35,000€ in total), one computer per postdoc (as the department does not supply 
them), and books. Publication costs are expected to be low because some target journals do not charge 
publication fees. Other covers the construction of the dataset in WP 3.1 (140,000€) and the organization of 
the two workshops (see WP 5.2), including the travel expenses of the invited speakers.  

 

Cost Category Total in Euro  

Direct 
Costs 

Personnel 

PI 158291 
Senior Staff  36502 
Postdocs  528991 
Students 165560  
Other  0  

i. Total Direct Costs for Personnel (in Euro) 889344  
Travel  98000  
Equipment 40500  

Other goods 
and services 

Consumables 0  
Publications (including Open Access fees), etc. 7000 
Other (please specify)  165000 

ii. Total Other Direct Costs (in Euro) 310500  
A – Total Direct Costs (i + ii) (in Euro) 1199844 
B – Indirect Costs (overheads) 25% of Direct Costs (in Euro)  299961 
C1 – Subcontracting Costs (no overheads) (in Euro) 0 
C2 – Other Direct Costs with no overheads (in Euro)  0 
Total Estimated Eligible Costs (A + B + C) (in Euro) 1499805 
Total Requested EU Contribution (in Euro) 1499805 
 

Please indicate the duration of the project in months: 60 

Please indicate the % of working time the PI dedicates to the project over the period of 
the grant: 

75% 

Please indicate the % of working time the PI spends in an EU Member State or 
Associated Country over the period of the grant: 

100% 

 
I am fully committed to AMORE for the whole duration of the project, except for about 80 hours of teaching 
per year, administrative duties related to my position, and student supervision (one PhD student outside the 
project, working on related topics). 
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