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Abstract

Lexical semantic change has primarily been
investigated with observational and experimen-
tal methods; however, observational methods
(corpus analysis, distributional semantic mod-
eling) cannot get at causal mechanisms, and
experimental paradigms with humans are hard
to apply to semantic change due to the extended
diachronic processes involved. This work in-
troduces NeLLCom-Lex, a neural-agent frame-
work designed to simulate semantic change by
first grounding agents in a real lexical system
(e.g. English) and then systematically manip-
ulating their communicative needs. Using a
well-established color naming task, we simu-
late the evolution of a lexical system within a
single generation, and study which factors lead
agents to: (i) develop human-like naming be-
havior and lexicons, and (ii) change their behav-
ior and lexicons according to their communica-
tive needs. Our experiments with different su-
pervised and reinforcement learning pipelines
show that neural agents trained to ‘speak’ an
existing language can reproduce human-like
patterns in color naming to a remarkable extent,
supporting the further use of NeLLCom-Lex to
elucidate the mechanisms of semantic change.

1 Introduction

A central goal in the study of language emergence
and evolution is to understand how cognitive and
communicative pressures shape linguistic systems
(Smith, 2004, 2022; Christiansen and Chater, 2008;
Regier et al., 2015). More broadly, different schol-
arly traditions and fields of study have stressed the
dynamic relationship between language use, on the
one hand, and the linguistic system, on the other,
be it at the synchronic (Goldberg, 1995; Hawkins,
2004; Bybee, 2010) or diachronic level (Campbell,
2013; Labov, 2010; Hopper and Traugott, 2003).
In particular, the referential communicative
context has been found to shape language use
across timescales, ranging from pragmatically-

driven naming choices in synchronous communi-
cation (Sedivy et al., 1999; Sedivy, 2003) to the
longer-term emergence of shared lexical conven-
tions and to their semantic shift in response to
changing communicative needs (see, e.g., artificial
language learning studies in Winters et al. (2015)
and Hawkins et al. (2018)).

While the relationship is widely acknowledged,
studying the implicated mechanisms across all of
these timescales is challenging. In recent decades,
a large body of work has therefore focused on
agent-based computational simulations (Hurford,
1989; Steels, 1997; De Boer, 2006), receiving a
renewed increased interest with the deployment of
modern neural-network agents (Lazaridou et al.,
2018; Lazaridou and Baroni, 2020; Chaabouni
et al., 2021; Kharitonov et al., 2019; Lian et al.,
2023). We follow this tradition, focusing on the
lexicon, which is essential for enabling reference to
entities in the world and therefore plays a key role
in effective communication (Steels, 2005; Brochha-
gen and Boleda, 2022).

Computational modeling studies have used com-
munication games to simulate the emergence of lex-
ical systems in neural network-based agents (Mon-
roe et al., 2017; White et al., 2020; Kobrock et al.,
2024, 2025). These methods enable control over
contextual variables and make it possible to sim-
ulate language change across different timescales.
Despite these advances, most emergent communi-
cation studies begin with blank-slate agents and
focus on how contextual variability shapes novel
communication systems (e.g., Kobrock et al., 2024).
By contrast, little work has focused on modeling
how an existing lexical system might adapt prag-
matically to changing communicative needs, an
approach that allows both more direct comparisons
to human behavior and the possibility of simulating
specific trajectories of language change.

In this paper, we start exploring precisely this
approach by introducing the NeLLCom-Lex frame-



work. We build on NeLLCom (Lian et al., 2023), a
flexible agent-communication framework that com-
bines generic supervised learning (SL) and rein-
forcement learning (RL) objectives, making it well-
suited for exploring how communication pressures
shape language use and lexical adaptation across
different communicative contexts.

As a first exploration of the dynamics between
use and structure, we focus on dyadic interactions
and lexical evolution across a single generation;
as well as on a specific contextual factor, namely
the differences in the granularity of the distinctions
speakers need to make in their communicative envi-
ronments. What we are thus simulating is linguistic
adaptation across a lifetime, brought upon by com-
municative needs regarding reference. Through
a number of experiments with a well-established
color naming task (Monroe et al., 2017) and vari-
ous evaluation methodologies inspired in the study
of human behavior (Gualdoni and Boleda, 2024),
we show that our NeLLCom-Lex agents can re-
produce human-like pragmatic naming behavior,
while maintaining overall efficient lexical systems.
We also find agent naming behavior changes in
response to different communication needs in the
environment. Overall, our results support the use
of NeLLCom-Lex to investigate the interplay be-
tween language use and language structure in the
lexicon.!

2 Background

It is known that, synchronically, speakers choose
words that best identify the referent given the com-
municative context. For example, if a target object,
e.g., a Dalmatian, appears in a context surrounded
by other dogs, the word dog may be too broad to
identify the referent. In such cases, speakers tend
to choose more specific words (e.g., Dalmatian),
reflecting a pragmatic naming choice driven by
communicative need (Winters et al., 2015; Graf
et al., 2016). While it is easy to justify this kind of
pragmatic adaptation to context, it is not so straight-
forward to explain why there is redundancy in the
lexicon in the first place, in that it includes words at
higher and lower levels of informativeness; why do
languages not have only more informative words
(Dalmatian, Golden retriever, chihuahua), or why
do they not only have less informative words that
they modify (dog with black spots)? Gualdoni and

!Code and materials are released at https://github.
com/yuqing@304/NeLLCom-Lex.

Boleda (2024) hypothesized that this redundancy
in the lexicon, coupled with pragmatic adaptation
to context, is a good solution to the trade-off be-
tween communicative pressures to be understood
and cognitive pressures to expend low effort.

Trade-offs between effort and informativeness
in language use have been studied within the Ra-
tional Speech Acts (RSA) framework (Goodman
and Frank, 2016; Graf et al., 2016; Monroe et al.,
2017; White et al., 2020; Zarrie3 and Schlangen,
2019). For instance, Monroe et al. (2017) collected
experimental data from color reference games and
built pragmatic neural speaker and listener models
within the RSA framework. Experiments show that
the embedded speaker model shows pragmatic be-
haviors, i.e., modulating utterance lengths based on
contextual difficulty. Subsequent work by White
et al. (2020) extended this line and found that only
models explicitly trained through a pragmatic rea-
soning objective (or approximations thereof) were
able to adjust utterance length to communicative
context. In both of these studies, messages could
be multi-word utterances, and utterance length was
used as a measure of effort while variations in in-
formativeness of individual word choices were not
considered.

Complementary research on emergent communi-
cation using RL highlights similar efficiency trade-
offs, though primarily at the level of the lexical
system (Lazaridou et al., 2018; White et al., 2020;
Chaabouni et al., 2020, 2021; Kobrock et al., 2024;
Gualdoni et al., 2024). For example, replicating
earlier findings (Zaslavsky et al., 2018) from large-
scale data analysis, Chaabouni et al. (2021) exam-
ined pressures in emergent communication among
neural agents, focusing on the trade-off between
communicative accuracy and complexity in color
partitioning in agents’ naming systems. Similarly,
Carlsson et al. (2024) modeled combined pressures
from communication and transmission of signals
over generations to explain the emergence of effi-
cient color naming systems. Overall, these stud-
ies focus on how general pressures coming from
language learning and use shape properties of the
lexical system, rather than on how pragmatic lan-
guage use in context shapes those properties. While
Kobrock et al. (2024) studied emerging lexicons
in context, their models developed languages from
scratch using symbolic data, without grounding in
real-world lexical meanings.

The work by Gualdoni and Boleda (2024) of-
fers a promising bridge between these two tradi-
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Figure 1: Overview of agent architectures and the referential communication game. The speaking agent is presented
with a target color (¢;) and, depending on the experimental condition, may also receive two distractor colors
interpreted as context (dashed box). The listening agent always receives three colors and has to guess the index % of
the correct one (c;), in this case 2. Both agents are first trained by SL on a dataset of human interactions.

tions. They introduced a novel measure of infor-
mativeness for words and lexical systems that cap-
tures both context adaptation in language use and
the structure of lexical systems. Meanwhile, Lian
et al. (2023) introduced the NeLLCom framework,
which adopts a two-phase learning paradigm for
simulating the emergence of syntactic universals
(Lian et al., 2024, 2025; Zhang et al., 2024a,b) with-
out the need of complex, task-specific listener mod-
els typical of RSA. In NeLLCom, agents are first
trained to use a language with human-like struc-
tural properties via Supervised Learning (SL); then,
those same agents are jointly optimized through in-
teraction via Reinforcement Learning (RL). Build-
ing on these advances, we propose NeLLCom-Lex
to simulate lexical change and measure lexical
properties at both the language use and system
level, using the metrics from Gualdoni and Boleda
(2024). This enables a unified analysis of how
communicative needs shape both in-context com-
munication and lexicon structure.

3 NeLLCom-Lex: A Neural-agent
Framework for Lexical Systems

Extending NeLLCom to simulate the evolution of
lexical meaning via a referential game requires a
number of non-trivial modifications. In terms of
meaning representations, NeLLCom-Lex replaces
symbolic triplets with continuous perceptual inputs
(i.e., CIELAB color vectors), providing a grounded
representation space suitable for modeling lexical
meaning in the color domain. Secondly, shifting
from a meaning reconstruction task to a referential
discrimination game requires architectural changes:
Instead of processing utterance sequences with re-
current models, NeLLCom-Lex uses single-symbol

utterances and incorporates a context encoder to
model distractors. This section describes the result-
ing task and architecture.

3.1 The task

NeLLCom-Lex agents communicate about a sim-
plified referential world using pre-defined lexicons
acquired during SL. Speaking agents are presented
with a target color image ¢; along with two distrac-
tor color images cq4, and cg,. The speakers’ task
is to generate a message (i.e., a color name w) to
convey the meaning of the target color to the lis-
tener. Each word w is a discrete symbol drawn
from a fixed vocabulary V, i.e., w € V. Listening
agents receive the message along with the same tar-
get color and distractors, presented in randomized
order. A successful communication occurs if the
listener correctly selects the target color. During
SL, the message corresponds to a pre-defined color
name; during RL, it is generated by the Speaker.
During RL, thus, agents play a referential discrimi-
nation game.

3.2 Agent architectures

Both speakers and listeners are composed of feed-
forward neural networks (FNNs), following the
common architecture design in referential commu-
nication games (Chaabouni et al., 2021; Kharitonov
et al., 2020). Figure 1 shows the agent architectures
and how they interact during communication. For
both kinds of agents, the target color chip (and, op-
tionally, its distractors) is represented as CIELAB
color vectors and mapped through feed-forward net-
works to obtain embeddings. These embeddings
provide a grounded representation space for model-
ing lexical meaning in the color domain (Brainard,



2003). The color name w is mapped to its represen-
tation through an embedding layer.

Speaker The speaker observes a referential con-
text consisting of a target color ¢; and two dis-
tractors cq, , C4,, With the target always in the first
position. Each color is processed independently
through its own feedforward block. The resulting
embeddings are concatenated and passed through a
fourth feedforward block, producing a joint repre-
sentation used to predict a single-symbol message
w via a final linear classifier. To investigate how ac-
cess to contextual information affects the speaker’s
lexical choices, we manipulate its input: in the
context-aware setting, all three colors {ct, ¢4, , ¢q, }
are encoded normally; in the context-unaware set-
ting, distractor embeddings are zeroed out.

Listener The listener receives the color name w,
along with the same referential context consisting
of a target color ¢; and two distractors cq,, C4,,
presented in randomized order. Each of the three
color candidates is independently projected into a
hidden representation using a feedforward block.
Simultaneously, the color name w is mapped to
its representation. The listener then computes the
similarity (dot product) between the embedding
of w and each of the embedded color candidates.
These similarity scores are transformed into a log-
probability distribution over the three candidate
positions via a softmax layer. The listener is trained
to select the position of the intended referent.

3.3 Supervised language learning

SL trains agents on a dataset D of color triplets
paired with target color names (see Section 4.1 for
details). The speaker learns to produce a name
given a triplet, while the listener learns to identify
the target color given a name and a shuffled triplet.

Speaker The speaker’s parameters 6g are trained
by minimizing the cross-entropy loss:

E;up(es) — _ Z logp(w | c; 95) (1)
(c,w)eD

where w is the ground-truth target color name, and
c is the input color(s) provided to the speaker.

Listener The listener’s parameters 6, are opti-
mized by minimizing the cross-entropy loss:

L®0)=— Y logp(i|w,&0L) (2)

(w,é,1)eD

where ¢ = {¢1, é2, €3} is the shuffled color triplet
and i € {1, 2,3} the target color position in ¢.

3.4 Communication learning

While speaker and listener models are trained inde-
pendently during SL, they are updated jointly dur-
ing RL to optimize communicative success. This
phase allows us to explore how the learned lexical
system adapts under pressure for communication
efficiency. Following standard practice in emer-
gent communication (Chaabouni et al., 2021), we
simulate a referential game in which a speaker .S
conveys a target color ¢; to a listener L by pro-
ducing a symbol from a fixed vocabulary. In our
setup, the speaker S conveys the target color using
a word w learned during SL. The goal for both
agents is to maximize a shared reward evaluated by
the listener’s prediction. For this phase, we adopt
the classical policy-based algorithm REINFORCE
(Williams, 1992). Specifically, we optimize:

S == logp(i | ¢;0s) vt (3)

where r* is the reward based on the listener’s pre-
diction: ¥ = log p(i | w0, & 60yr).

4 Experimental Setup

Our goal is to design agents that learn to use and
adapt an existing lexical system in a way that mir-
rors human behavior. This involves adapting word
use to the communicative context (using more in-
formative color names in hard contexts and less
informative ones in easier contexts) at multiple
scales: that is, situationally in synchronous com-
munication, but also in the longer term by updating
shared lexical conventions according to changes in
the communicative needs of the environment.

We investigate the factors leading to more
human-like behaving agents through two sets of
experiments: different SL+RL training pipelines
with varying access to context (§5.1) and variations
in the communicative environment of the agents
during communication training (§5.2), using the
dataset and evaluation metrics described below.

4.1 Datasets

For SL, we use the English version of the Colors
dataset processed by Gualdoni and Boleda (2024)
to analyze lexical properties, based on the original
data collected by Monroe et al. (2017). In this data,
human participants engage in a dyadic reference



game, where the speaker describes a target color
chip from a grid containing two distractor chips.
The goal is for the listener to correctly identify
the target. Each target chip can appear in multiple
contexts that vary in difficulty, defined by the vi-
sual similarity to distractors: FAR (both distractors
clearly distinct from the target), SPLIT (one distinct
and one similar distractor), CLOSE (both distrac-
tors similar to the target). The dataset contains all
the successful communication rounds solved with
a single word, and comprises 9,309 far, 3,886 split,
and 2,239 close instances (15,434 in total).

To ground agents’ language use, SL is conducted
using explicit lexical labels from the Colors dataset.
Of these, 3K instances are held out for SL testing
(TESThum ), While the remaining 12.4K are used for
SL training (TRAINpqm,)-

For RL training and evaluation where human la-
bels are not needed, we generate a large number of
color triplets for far/split/close context types, fol-
lowing the sampling procedure described by Mon-
roe et al. (2017) (see Appendix A, for data genera-
tion and model training details). The generated test
set distributions differ by experiment and are de-
scribed in §5.1 and §5.2 respectively. This allows
us to scale up training without requiring additional
labeled data, since RL only relies on communica-
tive feedback.

4.2 Evaluation

Agent productions are always evaluated on a held-
out test set of contexts (i.e., combinations of target
and distractor colors) that are not seen during any
training phase. To ensure robust results, all experi-
ments are repeated with 10 different random seeds
and the averaged evaluation metrics are reported.

Accuracy To assess the performance of the SL
phase, we measure speaking and listening accu-
racy (Accgpr, and Accys, respectively) against the
human labels provided in the Colors dataset. These
measures capture the extent to which agents have
learned to master a given lexical system L. Com-
munication accuracy or success (AcCeomm) 18 in-
stead defined as the proportion of trials where the
listener successfully identifies the correct color la-
bel based on the input received from the speaker.

Pragmatic adaptation Recall that humans adapt
their naming choices to the difficulty of the referen-
tial task. For instance, in the top row, right column
of Table 3, we see that the same chip was called
“green” when appearing next to a gray and a blue

chip, but “sage” when it appeared next to two other
green chips of different shades, as “green” would
be ambiguous in this context. To test whether
agents also learn this kind of pragmatic adaptation,
we follow Gualdoni and Boleda (2024) and test
whether more informative words are used in more
referentially difficult contexts, the two quantities
being defined as follows. Word informativeness
(Iy) is measured by grounding color labels in the
set of color chips they denote, placing these refer-
ents within a convex visual space. More specifi-
cally, given word w, the spread of its visual features
(Sw) is defined as the average pairwise distance be-
tween the objects o that are referred to by w:

Sw = %ZZCZ(OZ',OJ') (4)
i g

where N denotes the number of unique object pairs,
and d(o;, 05) refers to the Euclidean distance be-
tween objects o; and o, in the CIELAB space, when
both objects are denoted by the same word w. The
inverse of the spread gives us word informativeness:
I, = 1/S,,. Thus, words that apply to smaller sub-
sets of color chips are considered more informative
about the denoted shade and will have higher I,
values. Context ease (F.;,) is defined as the dis-
tance between the target color chip and the hardest
distractor in the context (i.e. the distractor being
closest in CIELAB color space).

To examine the relationship between word infor-
mativeness and context ease, we fit a linear mixed-
effects model predicting I, for the word generated
by the speaker, using E;, as a fixed factor. Agent
initialization seeds and target chips are treated as
random effects.”

Properties of the lexicon Finally, we define three
system-level metrics to examine the properties of
the agents’ lexicons. System-level informative-
ness (Gualdoni and Boleda, 2024) is defined as the
average informativeness I,, of the words used to
solve N interactions.

1L
IL—N;I; (5)

It captures the average informativeness afforded by
a given lexicon. Human-like lexicons have mid
Iy, values—enough to make useful distinctions,
without being unnecessarily informative (Gualdoni

“We consider only the target chips that appear at least twice
in the dataset, following Gualdoni and Boleda (2024).



and Boleda, 2024). Following Regier et al. (2015),
we use a different measure of lexical complexity,
namely the number of different color words, or
word types, used by a speaking agent evaluated on
a given set of color chips (|W|). We call this lexi-
cal diversity. The third measure, semantic drift,
quantifies the divergence of the agents’ lexicons
from the human lexicon by computing the distance
between their word prototypes (Gualdoni et al.,
2023). First, the prototype of each color name is
obtained by averaging the CIELAB coordinates of
all color chips labeled with that name. Then, for
every color used by the agents, we compute the
Euclidean distance between its prototype and the
corresponding human prototype. We define the
semantic drift (Dr) of a lexical system L as the
average of these distances.

5 Experiments and Results

We carry out two sets of experiments. The first set
(§5.1) aims at testing the conditions under which
agents develop pragmatic naming behavior and lex-
ical properties that are similar to those of humans.
In particular, we check how and when access to con-
text is necessary for human-like lexicons to emerge.
The second set (§5.2) tests the effect of different
communicative needs on the resulting behavior and
lexicons; in particular, it exposes agents to more
and less granular color distinctions.

5.1 How does context access during training
affect agent behavior?

We set up different SL and RL training pipelines to
assess the extent to which context-sensitive training
leads agents to acquire more or less human-like
color naming behavior, based on the metrics
defined in the previous section. We also study the
effect of introducing context in different phases of
the pipeline. For example, SL+ refers to only SL
with access to context, while SL—RL~+ means SL
without context followed by RL with context.

In these experiments, RL training and evaluation
are performed on generated data matching the con-
text ease distribution of the human Colors dataset
which is used for SL training. Specifically, we use
12.4K color triplets for training (TRAINgey, distH)
and 15.4K for testing (TEST ey, disti). We report
agent productions on the overall (O) test set, as well
as separately on far (F) and close (C) contexts.>

3Split contexts are part of this test set, but we do not report

their performance separately as it highly correlates with that
of close contexts, as reported in Gualdoni and Boleda (2024).
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Figure 2: Mean speaking and listening accuracy
on TESTpyum, and mean communication accuracy on
TESTgen,disti as a function of training epochs across
different training pipelines. In the right-most plot,
epoch O denotes the state immediately after SL and
before RL. Shaded regions indicate 95% confidence in-
tervals. All values are averaged over 10 random seeds.

Accuracy Figure 2 shows agents’ speaking and
listening accuracy on the human-labeled TES T}y,
and communication accuracy on the generated
TESTgen,distH- Speaking agents achieve slightly
higher accuracy when trained with context (79%
vs. 75% without context), suggesting the benefit
of contextual information to approximate human
naming data.* Listener agents reach 90% accuracy
by epoch 30, with no differences across conditions,
as context only affects the speaker. As for commu-
nication accuracy, agents trained with context dur-
ing both SL and RL start below 90% when evalu-
ated on the generated dataset right after SL training
(epoch 0), indicating limited generalization to the
novel dataset despite pragmatic behavior learned
during SL. Acceomm rapidly improves after just
one epoch of RL, suggesting that access to context
during communication-based training is needed for
pragmatic language use in novel situations. Agents
trained without context in SL but with context in
RL initially struggle to communicate but quickly
reach comparable accuracy to fully context-trained
agents. This suggests that agents can learn to use
context effectively regardless of whether they were
trained with it in the SL phase. By contrast, and
as expected, agents trained without context in both
SL and RL achieve the lowest accuracy, highlight-
ing the necessity of contextual exposure for robust
communication.

Next, we study how the different pipelines affect
the agents’ 1) pragmatic naming behavior, 2) lexi-
cons (informativeness, lexical diversity, and seman-
tic drift). The results are summarized in Table 1.

4Speaking agents cannot reach 100% accuracy since a sin-
gle target color chip can be mapped to multiple color names in
the dataset because of the naming variation across participants.



Training B(Ectz) I |W| Dy
SL— 0.000 359 850 147
SL+ —0.003 323 127 203
SL—RL— —0.000 528 21.1 462
SL-RL+ —0.002 253 326 484
SL+RL+ —0.002 2.60 345 473
Human —0.008 2.78 49.0 -
Table 1: Agents’ production properties on

TESTgen,distH- B(Ee;): estimated effect of context
ease on word informativeness with significant values in
boldface (p<0.001; standard errors for all estimates are
below 0.001). ; Ir.: system-level informativeness; |W|:
lexical diversity; Dy : semantic drift. Human values are
reported from Gualdoni and Boleda (2024) and refer
to the full 15.4K Colors dataset.
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Figure 3: Word informativeness as a function of context
ease on TEST gey, dist i fOr 2 representative seeds.

Pragmatic adaptation Table 1 and Figure 3
show that neural agents indeed exhibit pragmatic
adaptation to context if they are exposed to the
referential context at training time. [,, decreases
slightly but significantly as context becomes easier
for agents exposed to context, either during SL, RL
or both. Notably, there is no significant difference
between the three context-aware pipelines.’ This
indicates that access to context leads agents to de-
velop human-like pragmatic behavior regardless of
whether it is introduced during SL or RL. The latter
does matter for other aspects, as we will see below.

Properties of the lexicon Agents without access
to context not only fail to exhibit pragmatic be-
havior, but also develop inefficient lexicons: On
the one hand, they are overly informative (/7,=3.59
and 5.28 for SL— and SL—RL—, respectively, com-
pared to 2.78 for humans); on the other hand, de-
spite this high informativeness, they are not as suc-
cessful at communicating as the others (see Fig-
ure 2). This pattern is also visible in Figure 3 (for
further analyses of informativeness distribution, see
Appendix D). These agents also develop very poor

5See Appendix B for all pairwise statistical testing results
for the current and subsequent modeling. Additional scatter-
plot examples are provided in Appendix C.

lexicons (8.5 and 21.1 average word types, com-
pared to 49 for humans). Crucially, even if agents
develop pragmatic behavior already after super-
vised training if they have access to context (SL+
condition), that doesn’t mean that their lexicons
are human-like: they are still over-informative (I,
3.23) and, especially, they are very poor, with only
12.7 word types on average. Instead, allowing both
access to context and interaction while learning
(SL+RL+) yields the closest lexicon to the human
one, with I, 2.6 and vocabulary size 34.5.

These patterns suggest that access to context and
communication not only drive pragmatic behavior
but also encourage the development of a richer,
more adaptive lexicon (see Appendix E for analysis
across test subsets, i.e., far and close contexts).

The last column of Table 1 reports the aver-
age semantic drift, measured as the divergence be-
tween model and human prototypes®. As could
be expected, drift leaps after RL in all conditions.
Thus, a trade-off appears between keeping words
grounded in human language and maintaining a
lexical system with overall human-like properties.

Interim conclusion From this set of experiments,
we conclude that the overall NeLLCom pipeline,
where agents first acquire a given linguistic sys-
tem through supervised learning and subsequently
adapt it via reinforcement learning, shows promise
to model the dynamics between language use and
the properties of lexical systems. The setting that
yields the most human-like behavior is SL+RL+
(i.e., where agents have access to context both at
SL and at RL time). In this setting, agents de-
velop lexical systems that are at a middle level
of informativeness and remarkably varied (both
properties observed in humans), and they exhibit
pragmatic adaptation to context in synchronic pro-
duction (again as observed in humans).

5.2 Changing communication needs

We hypothesize that agents will adapt their behav-
ior and lexicons to varying referential needs. To
test this, we vary the distribution of contexts dur-
ing RL training, exposing agents to circumstances
where they need to make more or less granular
color distinctions (e.g., do they need to identify a
given turquoise chip among red and yellow chips,
or among aqua and cyan?). In these experiments,
we adopt the context-aware pipeline (SL+RL+)

®See also Appendix G for a visualization of the speaker’s
word embeddings before and after RL.



and train agents in AllFar, HalfHalf, and AllClose
context conditions, with 15.4K training instances
for each condition. We also generate a balanced
15.4K-instances test set (TEST gep, dist50) comprised
of 50% far and 50% close contexts, where each
target color appears once in each context type. Im-
portantly, the test set is kept fixed across the three
different RL training distributions. However, we
report test performance overall (O) as well as sepa-
rately on far (F) and close (C) contexts.

In terms of pragmatic adaptation, we expect
AllClose-trained agents to develop a preference
towards more specific naming overall, HalfHalf-
trained agents to maintain or even amplify distinc-
tions in naming between close and far test subsets,
and AllFar-trained agents to reduce the pragmatic
distinctions. As for lexical properties, we expect
lexicons of HalfHalf agents to be closest to human-
like lexicons among the three conditions, with a
varied lexicon at a mid level of informativeness.
Lastly, we expect lexicons of AllFar agents to be
the least flexible according to these metrics (and
insufficient to properly solve close contexts).

Accuracy The overall accuracy results (Figure 4)
match our expectations: all agents are almost per-
fect at far contexts, but accuracy in close contexts is
much lower (~70-80%). Not only AllFar, but also
HalfHalf agents struggle more with close contexts
than AllClose. This suggests that communication
training is especially useful to negotiate specific
terms to be used in difficult contexts, whereas less
informative terms are already well mastered by
agents at the end of SL.
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Figure 4: Communication accuracy on TESTgen,dist50
for varying RL training distributions, as a function of RL
training epoch. Each plot shows accuracy on a different
test subset: Overall (O), Far (F), and Close (C).

Pragmatic adaptation As shown in Table 2,
agents exhibit pragmatic adaptation in all three con-
ditions. Moreover, a significant interaction between
context ease and RL training condition confirms
that this effect varies across conditions. Specifi-
cally, agents trained exclusively on difficult con-

pink, 1= 1.81 pink, 1= 2.62 pink, I= 2.79

(a) AllFar

(b) HalfHalf

(c) AllClose

Figure 5: Denotation in the CIELAB color space for
pink in the three RL training conditions.

texts show slightly stronger context sensitivity. In
contrast, agents trained on easy contexts show less
context sensitivity, reflecting their reduced need
to modulate informativeness by context ease. Fig-
ure 5 illustrates how this may affect the shift in
informativeness of individual colors. The visual
space covered by the label pink varies across RL
conditions: in the AllFar condition, the label pink
spans a broader region in the CIELAB space, corre-
sponding to a lower informativeness. In AllClose,
it denotes a much narrower area, and higher infor-
mativeness (see Appendix H for more examples).
The AllClose agents exhibit the greatest context
sensitivity, followed by the HalfHalf agents and, fi-
nally, the AllFar agents. This suggests that dealing
with more specific contexts may be more important
than being exposed to qualitatively different con-
texts, though further tests are needed to probe this
hypothesis.

Conditions B(Ectz)
Before RL -0.007
AllClose -0.005
HalfHalf -0.004
AllFar -0.003

Table 2: Effect of context ease on word informative-
ness across RL training distributions, all measured on
TESTgen,dists0- All effects are significant (p<.001).

Properties of the lexicon The results above sug-
gest that the more human-like lexicons are those
of AllClose, followed by HalfHalf and AllFar. We
see further evidence for this in Figure 6, where All-
Close agents need a much smaller vocabulary while
reaching the highest accuracy (Figure 4). This sug-
gests that their lexicons are more efficient. The
clearest contrast is AllFar, where the gap between
diversity in close vs. far contexts narrows and al-
most disappears. This suggests that increased expo-
sure to far contexts leads agents to generalize their
lexicon uniformly across context types, rendering



it inefficient. However, counter to expectation, we
find that the overall lexical diversity is very similar
across conditions, as are system-level informative-
ness scores (see Appendix E and F). The informa-
tiveness and lexical diversity values are similar to
those of §5.1, so reasonably close to those of hu-
mans. We do not find evidence for a comparatively
coarse-grained lexicon for AllFar agents.

Test Context (6] F mHC

N w »
o o o

iy
o

Number of Word Types

o

Before RL

AllClose HalfHalf AllFar

Figure 6: Number of distinct word types used before
RL and after RL training on varying context conditions
(O: overall; F: far; C: close).

Summing up, we find that training in a variety
of contexts allows agents to develop more flexible
pragmatic behavior and adaptive lexicons. Still,
further work is needed to fully understand the re-
lationship between the referential context and the
properties of the lexicon.

Pragmatic naming examples Grounding agent
language in a human lexical system enables direct
comparison with human behavior. Table 3 pro-
vides some representative examples evaluated on
TESThum. showing that, in some cases, SL-trained
agents already use broader terms (e.g. green) in far
contexts, but prefer more informative labels (olive)
in contexts where finer distinctions are needed, sim-
ilarly to the human reference labels (green-sage).
In other cases, however, the same term (purple) or a
comparably broad term (red-brown) is used in both
context types. After RL, the pragmatic naming be-
havior of the agents becomes more consistent (e.g.
red vs. teal or concrete). At the same time, the
use of unexpected terms, like gray in the first color
example, reveals that semantic drift has occurred.

6 Discussion and Conclusion

We introduced NeLLCom-Lex, a neural-agent
framework to study the interplay between language
use and the evolution of lexical systems. Using a
well-established color naming task for which hu-
man naming data is available, we examined which
factors lead to more human-like pragmatic nam-
ing behavior in agents initially trained to ‘speak’

Agent 1 Agent 2 Human
D- green — green green — green green
D olive — purple olive — gray sage
- purple — purple  purple — purple grapes
- purple — pink purple — red purple
- red — red red — red red
_ brown — teal brown — concrete  mauve

Table 3: Color naming examples from two speaking
agents, along with the human reference label. In each of
the three examples, the same target color (in the black
frame) is presented in far (top) vs. close (bottom) con-
texts. Arrows indicate naming changes: before—after
RL training in the AllClose condition.

an existing lexical system (in our case: English).
We found that agents learn to adapt their word use
to context (i.e., using more informative terms in
harder contexts and less informative ones in easier
contexts) regardless of whether context is provided
to them during supervised learning, communica-
tion learning, or both. Furthermore, we found that
optimizing communication accuracy through a ref-
erential game led the agents to develop a richer,
more adaptive lexicon. In additional experiments,
we simulated changing communicative needs in
the agents’ environment by manipulating the dis-
tribution of different context difficulties during RL
training. Results show that agents trained mostly in
close contexts developed stronger pragmatic adap-
tations than those trained in far contexts, support-
ing the idea that pragmatic efficiency is driven by
communicative needs.

Overall, our experiments show that neural agents
can reproduce human-like patterns in color nam-
ing behavior, supporting their use as models for
studying how language evolves under communica-
tive pressures. In future work, we plan to use
NeLLCom-Lex to simulate specific instances of
lexical semantic change, such as meaning narrow-
ing and broadening, that have been traditionally
assumed to be driven by changes in speakers’ com-
municative needs, but whose mechanisms remain
to be explored (Bréal, 1897; Geeraerts, 2020).

Limitations

While our study sheds light on the conditions un-
der which pragmatic behavior emerges in artificial
neural agents, it also leaves open several questions.
For example, our agents interact within a relatively



constrained referential space (color triplets), which
may limit the generalization of the findings to more
complex semantic domains.

During SL, the training data is not uniformly
distributed across the three context types (far, split,
close). This imbalance may bias the agents to-
ward overfitting to the more frequent context types,
while disadvantaging learning in the close condi-
tion, where referential contrast is most challenging.
As a result, the observed trend may underestimate
the agents’ capacity for pragmatic adaptation.

It is also worth noticing that RL training is
affected by the entropy regularization parameter,
which regulates the degree of exploration and en-
courages a more dispersed output distribution from
the agent. Previous work has shown that over-
all message entropy after communication training
tends to remain near the lower bound, even un-
der strong regularization (Kharitonov et al., 2020).
Future work could explore how varying the en-
tropy regularization parameter influences agents’
pragmatic naming behavior and contributes to the
shaping of their emergent lexicon.

Finally, the current study models only dyadic
interactions and lexical evolution across a single
generation. For the latter, agents would need to be
iteratively trained with the previous generation of
agents’ productions (Carlsson et al., 2024). Future
work could also study group-level dynamics, such
as role alternation and group interaction patterns,
following recent developments in agent communi-
cation (Michel et al., 2023; Lian et al., 2024).
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A Datasets and model training

Colors in the dataset are represented as a three-
dimensional vector in CIELAB color space.
CIELAB was chosen for its perceptual uniformity,
where Euclidean distances approximate color dif-
ferences perceived by the human eye more accu-
rately than in other color models (Brainard, 2003).

Data generation For RL training and evaluation,
we generate a large number of color triplets for
the three context types (far, split, close), following
the sampling procedure described by Monroe et al.
(2017). The conditions are defined as follows: (1)
close, where all three colors are within a percepti-
ble threshold distance 6 from one another; (2) split,
where one distractor is within a distance of 8 from
the target while the other is farther away; and (3)
far, where all colors are farther than 6 from each
other. Colors are rejection-sampled uniformly from
the RGB space to satisfy these constraints.

To ensure that all sampled color differences are
perceptible to human vision, we used the most re-
cent CIEDE2000 standard to measure color dis-
tances (Sharma et al., 2005), which is calibrated to
human perceptual judgments. All distances were
constrained to exceed a lower bound of 5 (just no-
ticeable difference), and we used a threshold value
of @ = 20 to define the context types.

Model training Hyperparameters were selected
based on preliminary experiments. Speakers and
listeners both use feedforward neural network
(FNN) modules with a hidden dimension of 512.
Each FNN module consists of a linear layer fol-
lowed by batch normalization, a ReLLU activation,
and a dropout layer. Both SL and RL phases use
the default Adam optimizer (Kingma and Ba, 2015)
implemented in PyTorch (Paszke et al., 2017), with
a learning rate of 1 x 10~° and a batch size of 32.
Each training phase runs for 30 epochs, and all
experiments are repeated across 10 random seeds.
For the RL phase, we set the entropy regulariza-
tion parameter as 0.15 for both the speaker and the
listener model.

The implementation is partly based on the EGG
toolkit (Kharitonov et al., 2019).

B Pairwise comparisons

B.1 Pairwise comparisons for different SL
and RL training pipelines

To evaluate how the relationship between context
ease and word informativeness varies across train-
ing pipelines, we fit two linear mixed-effects mod-
els. The first model includes an interaction term
between context ease and training pipeline, allow-
ing the slope of context ease to vary by pipeline.
The second model excludes this interaction, as-
suming a uniform effect of context ease across all
pipelines. A likelihood ratio test comparing the
two models confirmed that including the interaction
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significantly improves model fit (x%(4) = 58.70,
p < .001), indicating that the effect of context
ease on informativeness differs by training pipeline.
Each model includes random intercepts for seed
and target chip, accounting for variation across
model initializations and color items.

Table 4 shows pairwise comparisons for the inter-
action between context ease and different training
pipelines. The negative estimates indicate that cer-
tain training pipelines lead to a stronger decrease
in informativeness as context ease increases. In
other words, agents trained under those pipelines
are more sensitive to context difficulty when nam-
ing targets. Specifically, agents trained without
access to context throughout (SL—, SL—RL—)
show little to no sensitivity to context ease, while
pipelines involving context access, either during
SL or RL, lead to significantly steeper declines in
informativeness with increasing context ease (e.g.,
SL—RL+ vs. SL—: g8 = —0.001, p < 0.001; SL+
vs. SL—: 8 = —0.001, p < 0.001). However, the
differences among pipelines that include context
(SL—RL+, SL+, SL+RL+) are not statistically
significant, suggesting that any context exposure is
sufficient to promote pragmatic adaptation.

Comparison Estimate p-value
SL— — SL—RL— -0.000 n.s.
SL— — SL—RL+ -0.001 p < 0.001
SL— — SL+ -0.001 p < 0.001
SL— — SL+RL+ -0.001 p < 0.001
SL—RL— — SL—RL+ -0.001 p < 0.001
SL—RL— — SL+ -0.001  p<0.01
SL—RL— — SL+RL+ -0.001  p<0.01
SL—RL4 — SL+ 0.000 n.s.
SL—RL+ — SL+RL+ 0.000 n.s.
SL+ — SL+RL+ -0.000 n.s.

Table 4: Pairwise comparisons for the interaction be-
tween context ease and different training pipelines. Es-
timates are rounded to three decimals. The “n.s.” label
indicates not significant. For instance, the comparison
SL— — SL—RL+ shows an estimated slope difference
of —0.001 with p < 0.001. This indicates that the learn-
ing curve in the SL—RL+ condition is significantly
steeper than in the SL— condition, although the abso-
lute difference in slope is very small.

B.2 Pairwise comparisons for varying context
distributions

Similarly, to examine how training under varying
context distributions during RL affects agents’ sen-
sitivity to context ease, we fit two linear mixed-

effects models. The first model includes an inter-
action between context ease and RL training con-
dition, allowing the slope of informativeness as a
function of context ease to vary across conditions.
The second model excludes this interaction, assum-
ing a uniform slope across all training conditions.
A likelihood ratio test confirmed that the interaction
significantly improves model fit (x?(2) = 174.35,
p < .001), indicating that the effect of context
ease on informativeness differs depending on the
distribution of contexts during RL training. Table
5 shows pairwise comparisons for the interaction
between context ease and varying context distri-
butions during RL training. The slope is steepest
in the AllClose condition, significantly more neg-
ative than in AllFar (8 = —0.002, p < .001) and
HalfHalf (8 = —0.001, p < .001). The HalfHalf
condition is also significantly steeper than AllFar
(B = —0.001, p < .001).” Specifically, agents
trained exclusively on difficult contexts learn to
produce more informative words and show slightly
stronger context sensitivity. In contrast, agents
trained on easy contexts show a weaker adapta-
tion effect, less context sensitivity, likely reflecting
their reduced need to modulate informativeness by
context ease.

Comparison Estimate  p-value
AllFar — AllClose -0.002 p<0.001
AllFar — HalfHalf -0.001 p<0.001

AllClose — HalfHalf 0.001 p<0.001

Table 5: Pairwise comparisons for the interaction be-
tween context ease and varying context distributions
during RL training.

C Relationship between context ease and
word informativeness

C.1 Visualization for different SL. and RL
training pipelines

Figure 7 shows the relationship between context
ease and word informativeness across different SL
and RL training pipelines and all random seeds.
While there is some variation across agents
within each condition, trends still emerge. Agents
trained without access to context, either after SL
(SL—) or after both SL and RL (SL—RL—), show
no sensitivity to E.. In contrast, agents that
were exposed to context during SL (SL+), RL

"Here, B denotes the estimated difference in slopes be-
tween conditions.
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Figure 8: Word informativeness as a function of context ease on TEST gen,dist50 for all seeds and for varying context

distributions during RL training.

(SL—RL+), or both phases (SL+RL+), tend to
produce more pragmatic language. In these set-
tings, word informativeness decreases slightly but
significantly as the context becomes easier, indi-
cating that context-aware agents adapt their lexical
choices to the communicative needs of the context.

C.2 Visualization for varying RL context
distributions

Figure 8 shows the relationship between context
ease and word informativeness across different SL

and RL training pipelines and all random seeds.

Agents trained exclusively on difficult contexts
(AllClose) produce more informative words in
harder contexts and show slightly stronger context
sensitivity compared to other conditions.

D Entropy of informativeness over word
types

To examine how informativeness is distributed
across the color terms used by agents, we com-
puted the entropy of word informativeness over
word types for each condition and after each train-
ing phase. First, we normalized the informativeness
scores by converting them into a probability dis-
tribution: each word’s informativeness score was
divided by the total informativeness summed over
all word types. We calculated the following equa-
tion:

Plw) = 2 (©)

> j=11 (w;)

where P(w;) is the normalized informativeness
score, with other words the probability of the infor-
mativeness score. After obtaining the normalized
score, we computed Shannon entropy over this dis-
tribution to assess how evenly informativeness is



spread across the vocabulary with the following
formula.

N

H= - P(uw;)log P(w;) (7)
=1

where H refers to Shannon’s entropy.

D.1 Entropy of informativeness for different
SL and RL training pipelines

This section analyzes the entropy of informative-
ness across different training pipelines that com-
bine SL and RL. Figure 9 illustrates the entropy
values for different SL and RL training conditions.

The condition SL+RL— shows a higher entropy,
indicating a more balanced distribution of infor-
mativeness across a broader vocabulary. This sug-
gests that the model has access to a richer set of
words, potentially improving its ability to adapt
to diverse contexts and enhancing communication
efficiency. In contrast, SL—RL— exhibits lower
entropy, with fewer words carrying most of the in-
formativeness. This could imply that the model
is over-relying on a small subset of words, mak-
ing it more prone to overfitting and limiting its
generalization ability, particularly in new or varied
contexts. Therefore, the SL+RL+4- condition may
facilitate better adaptability and clearer communi-
cation, while the SL—RL— condition risks reduced
flexibility. Moreover, the entropy values for the
conditions after RL are considerably higher. This
indicates that the model, having been trained with
both context-aware SL and RL, is most capable
of adapting to varied contexts and communicating
more effectively.
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Figure 9: Entropy of informativeness over word types
under different SL and RL training pipelines. Only en-
tropy computed on the full test set is reported, as the
distribution of far and close contexts is highly imbal-
anced, with far contexts being more frequent.

D.2 Entropy of informativeness for varying
context distributions

Figure 10 illustrates the entropy of informativeness
for varying context distributions during RL train-
ing. The entropy of informativeness is higher for
the close context compared to the far context in
each condition. However, when the proportion of
far context increases in the training data, the dif-
ference in entropy between far and close contexts
decreases. This suggests that a higher presence of
far context in the training data reduces the diversity
of informativeness.
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Entropy of Informativeness

Figure 10: Entropy of informativeness over word types
after agents being trained on varying context distribu-
tions during RL (O: overall; F: far; C: close).

E Lexical diversity

Although the distribution of far and close con-
texts in TESTgep dist i 18 imbalanced, with the close
condition represented by a smaller number of ex-
amples, distinct patterns of lexical diversity still
emerge (see Figure 11).
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Figure 11: Number of distinct lexical items used before
RL and after RL training. Error bars represent 95%
confidence intervals computed across the test set (O:
overall; F: far; C: close).

RL training substantially leads to higher lexi-
cal diversity, especially in the SL+RL~+ condi-
tion. Moreover, in context-aware settings (SL+,
SL—RL+, SL4+RL+), agents tend to produce a
greater variety of word types in the close test set



compared to the far test set, despite the former
being smaller in size.

These findings suggest that access to contextual
information not only promotes pragmatic language
use but also supports the development of a more
flexible and expressive lexicon, especially in more
challenging communicative settings.

F System-level informativeness

Figure 12 shows the system-level informativeness
for varying context distributions before RL and
after RL training on varying context conditions.
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Figure 12: System-level informativeness before RL and
after RL training on varying context conditions (O: over-
all; F: far; C: close).

Before RL, the system-level informativeness is
higher in the close context compared to the far
context. This difference progressively diminishes
as the context distribution shifts from AllClose to
HalfHalf and then to AllFar. In the AllFar con-
dition, the informativeness gap nearly disappears,
indicating that increased exposure to far contexts
encourages the agents to develop a more uniform
lexicon that generalizes consistently across differ-
ent context types.

Notably, the system-level informativeness of
neural agents before RL closely matches that ob-
served in human production, both of which are
higher than the informativeness after RL. This sug-
gests that SL causes agents to replicate the distribu-
tion found in the human training data, while com-
munication learning drives agents to become more
efficient by reducing system-level informativeness.

G Visualization of word embeddings

The lexicon-related measures we use are based on
word denotations (i.e. on the speaking agents’ pro-
ductions), allowing us to compare agents to hu-
mans. However, for agents, we can also inspect
their internal lexical representations, in the form of
word embeddings. Figure 13 shows a 2-D projec-
tion of the output word embeddings (unembedding
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Figure 13: PCA projection of the speaker embeddings
of color terms, with positions before and after RL, for a
representative seed of the SL+RL+ condition.

matrix) for a representative speaking agent trained
by SL4+RL+ in HalfHalf condition. We can see
that the embeddings reasonably reflect color-to-
color relations: on the left part, we go from blue
to green as we move from top to bottom; in the
middle, we find yellows and browns; on the right,
the different reds. Aqua, turquoise and cyan are
near to each other and between blue and green; etc.

During RL, the representations of many words
change noticeably, but the overall semantic relation-
ships and main color clusters are largely preserved.
We leave to future work a more in-depth analysis
of how the agents’ word embedding spaces change
through interaction, and how those changes relate
to the semantic drift observed in the agents’ pro-
duction.

H Color denotation in visual space

Figure 14 illustrates the denotation in the CIELAB
color space for four color terms. The visual space
covered by the color name varies across RL con-
ditions: in the AllFar condition, each color term
covers a broader region, reflecting lower informa-
tiveness. In contrast, in the AllClose condition,
the denotation is more restricted, indicating higher
informativeness.



mustard, I= 7.41 mustard, I= 8.75

mustard, 1= 6.77

fuchsia, 1= 2.52 fuchsia, I= 3.15 fuchsia, 1= 4.37
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Figure 14: Denotation in the CIELAB color space for
four color terms (mustard, grapes, fuchsia, blue) after
three RL training conditions.
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