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Abstract
Human lexicons contain many different words
that speakers can use to refer to the same object,
e.g., purple or magenta for the same shade of
color. On the one hand, studies on language
use have explored how speakers adapt their
referring expressions to successfully commu-
nicate in context, without focusing on proper-
ties of the lexical system. On the other hand,
studies in language evolution have discussed
how competing pressures for informativeness
and simplicity shape lexical systems, without
tackling in-context communication. We aim at
bridging the gap between these traditions, and
explore why a soft mapping between referents
and words is a good solution for communica-
tion, by taking into account both in-context
communication and the structure of the lexicon.
We propose a simple measure of informative-
ness for words and lexical systems, grounded
in a visual space, and analyze color naming
data for English and Mandarin Chinese. We
conclude that optimal lexical systems are those
where multiple words can apply to the same
referent, conveying different amounts of infor-
mation. Such systems allow speakers to max-
imize communication accuracy and minimize
the amount of information they convey when
communicating about referents in contexts.

1 Introduction

A pervasive property of human lexical systems is
that many names can be assigned to the same ob-
ject. In other words, our semantic system allows
for a soft mapping between referents and words
(Rosch and Mervis, 1975; Snodgrass and Vander-
wart, 1980; Graf et al., 2016; Gualdoni et al., 2023).
For instance, speakers can call the same chip purple
or magenta (Monroe et al., 2017), and the same an-
imal dog or Dalmatian (Graf et al., 2016; Silberer
et al., 2020).

At the same time, a large body of literature has
claimed that human lexicons are optimized for effi-

*Currently at Apple.

Figure 1: To allow successful identification of a target
color chip (in the black frame) within a grid of can-
didates, a general term like purple is sufficient when
the context is not challenging (above). A more specific
name like magenta is needed when the distractors com-
pete more with the target (bottom) —data from Monroe
et al. (2017).

cient communication, which implies allowing for
accurate communication exchanges while maintain-
ing a compact size (Regier et al., 2015; Xu et al.,
2020; Zaslavsky et al., 2018). The existence of a
soft mapping, which is not the most compact solu-
tion possible, may appear on a first glance at odds
with such a pressure for efficiency. In this paper,
we ask: is a soft mapping between referents and
names an efficient solution? In an analysis of color
naming data for English and Mandarin Chinese, we
show that, indeed, at least for our domain of inter-
est, a soft mapping is an efficient solution in that it
achieves a good a trade-off between the amount of
information that speakers have to convey in their
contextual interactions, on the one hand, and the
overall communicative accuracy they can achieve,
on the other.

Indeed, communication exchanges between in-
terlocutors take place in rich visual contexts. The
dynamic nature of our environment and of speak-
ers’ goals constrains naming choices. In situations
where it’s essential to distinguish one item from
context objects, some names can be better than oth-
ers (Graf et al., 2016; Monroe et al., 2017; Mäde-
bach et al., 2022): for instance, when we want
our florist to hand us a bouquet of our favourite



flowers, the word flowers does not provide enough
information, while the word daisies does. Mon-
roe et al. (2017) collected experimental data on
the phenomenon, which we analyze in the current
study. They asked pairs of speakers and listeners to
communicate about target color chips appearing in
a grid surrounded by distractor chips —see Figure
1. When the target chip is easily distinguishable
from the distractors (top), a general term like pur-
ple might suffice. However, in a more challenging
context, where target and distractors are similar
(bottom), a more precise term like magenta might
be necessary to ensure successful communication.
What are the consequences of this on the structure
of lexical systems?

Good lexical systems need to be simple, which
minimizes cognitive load, and informative, which
maximizes communicative effectiveness (Regier
et al., 2015). Studies have formalized this princi-
ple within an information-theoretical framework,
showing that human systems optimize a trade-off
between the amount of information provided and
system complexity (Regier et al., 2015; Zaslavsky
et al., 2018; Xu et al., 2020; Zaslavsky et al., 2021).
While these studies often account for flexible se-
mantic mappings (Zaslavsky et al., 2018), they do
not study communication as situated, with speak-
ers and listeners interacting in an always changing
environment.

In this work, we explore why a soft mapping
between referents and names is a good solution
for in-context communication. Note that most re-
search on the semantic properties of the lexicon
has so far focused on a different aspect of the soft
mapping between language and its use, comple-
mentary to the one we study here: ambiguity and
polysemy, or the fact that most words have multi-
ple meanings (Juba et al., 2011; Piantadosi et al.,
2012; Regier et al., 2015; O’Connor, 2015). We
reverse the question, asking why a referent can be
described with different words (Graf et al., 2016).
This phenomenon entails that similar, overlapping
meanings can be denoted by different words.

Our method introduces a measure of word in-
formativeness based on word denotations and
grounded in a visual space, which can also be used
to measure the information provided by lexical sys-
tems as a whole. With it, we analyze the color
naming systems of English and Mandarin Chinese,
and claim that their structure is key to achieve suc-
cessful communication in context, with interlocu-

tors communicating in differently challenging sit-
uations. We first replicate findings from previous
studies, showing how speakers adjust their lexical
choices to context pressures, leveraging a flexible
mapping between referents and words (I and Lan-
guage Use). We then move to the system level, and
show that alternative systems with no such flex-
ible mapping are sub-optimal (I and Language
Systems).1

2 Related work

Studies modeling language use have explored how
speakers adapt their referring expressions and nam-
ing choices to the local context in which target
referents appear (Graf et al., 2016; Monroe et al.,
2017; Degen et al., 2019; Mädebach et al., 2022)
or to their communicative goal (Van Der Wege,
2009; Mädebach et al., 2022). These patterns have
been formalized in the unified quantitative frame-
work of Rational Speech Act theory (RSA; Frank
and Goodman, 2012; Goodman and Frank, 2016;
Franke and Jäger, 2016; Graf et al., 2016; Degen
et al., 2019).2

RSA models focus on the contextual informa-
tiveness of referring expressions and utterances:
the information that a word provides is measured
in context, factoring in similarities and differences
between a target referent and context objects. If a
target object, e.g., a dog, appears in a context sur-
rounded by other dogs, the word dog will not pro-
vide enough information about the target referent,
and speakers will avoid it, choosing a more specific
expression like Dalmatian, in order to help listen-
ers identify the target (Graf et al., 2016). Speaker
production choices are also constrained by consid-
erations about utterance cost, often measured in
terms of utterance length. Speakers are hypothe-
sized to choose referring expressions to maximize a
utility function, trading off the maximization of the
contextual informativeness with the minimization
of the production costs. The RSA tradition, given
this major focus on context-dependent word infor-
mativeness, does not discuss properties of lexical
systems as a whole.

Cross-linguistic studies on lexical systems have
highlighted that, even though different languages
partition their semantic space in different ways, this

1Scripts are available at https://osf.io/n3cxh/.
2Another theoretical framework that places emphasis in

speaker-hearer interaction mechanisms is Bidirectional Op-
timality Theory (Blutner et al., 2003; Benz and Mattausch,
2011).

https://osf.io/n3cxh/


variation is constrained. The structure of lexical
systems is believed to derive from the competing
communicative principles of informativeness and
simplicity, and languages optimize this trade-off —
similar in nature to the one discussed for language
use— in different ways (Regier et al., 2015; Za-
slavsky et al., 2018; Xu et al., 2020; Zaslavsky et al.,
2021). In this tradition, rooted in rate-distortion
theory, the informativeness of a word is inversely
related to the reconstruction error caused in a lis-
tener when a speaker uses it to describe a refer-
ent. In this sense, word informativeness is non-
contextual: the informativeness of a word w for a
target object t relates to the word’s semantics and
the referent’s properties, and is not conditional on
the local context in which t appears. This feature is
in common with the word informativeness measure
we adopt in this study. Of note, Zaslavsky et al.
(2020) showed theoretical connections between the
objective proposed in the RSA framework and rate-
distortion theory, suggesting that similar pressures
guide the evolution of lexical systems and their
pragmatic use (on a similar topic, see also Brochha-
gen et al. 2018).

In this work, we propose a new measure of word
informativeness that allows us to study speakers’
adaptation to context in language use as well as the
structure of lexical systems as a whole, bridging
a gap between approaches focusing on contextual
informativeness and approaches focusing on lexical
informativeness —see Section 3.2.

3 Methods

3.1 Dataset
We use Monroe et al. (2017)’s dataset of color
chips, including both the English and the Mandarin
Chinese data.3 The English dataset is annotated
with more than 53K referring expressions collected
in a dyadic reference game. In each round, a tar-
get color chip is presented to two players in a grid
showcasing two other distractor chips, in random
order. One player –speaker– is tasked to unam-
biguously describe a target chip, allowing the other
player –listener– to guess the target chip —see Fig-
ure 1 for an illustration. Crucially, the same color
chip is annotated multiple times, in differently hard
contexts, as defined by the visual distance between
target and distractor chips. Such feature of the
data enables the analysis of how speakers adapt
their referring expressions to the context. Monroe

3Distributed under a CC-BY 4.0 license.

et al. (2017) found that speakers produce longer
and more specific referring expressions in harder
contexts (specificity was measured via WordNet;
Miller 1994). Since we are interested in analyzing
properties of the lexicon, after cleaning the data
to remove spelling mistakes and noisy annotations
(e.g. greetings between annotators), we subset the
dataset, considering only rounds that were success-
fully solved with a single word. This leaves us
with 16,168 data points. The Chinese dataset, con-
structed in the same way, is smaller: it contains
around 2K referring expressions, and 749 rounds
successfully solved with a unique word.

3.2 Word informativeness

We propose a new measure of word informative-
ness (I).4 Our measure is inspired in separate tra-
ditions in semantics, which have alternatively high-
lighted the role of things in the world (denotation)
or concepts in the mind. First, following the em-
phasis on reference of formal semantics (Dowty
et al., 1981), we ground word meaning in the set of
objects that the word denotes —in the case study
of this paper, the set of color chips that have been
labeled with a given word by the participants. Sec-
ond, we assume that meanings are convex regions
in a meaning space, as in the more cognitively ori-
ented Conceptual Spaces framework (Gärdenfors
and Williams, 2001; Gärdenfors, 2014). This way,
we approximate the meaning of a color term in
terms of a region in the visual space of colors de-
fined by the specific color chips that have been
labeled by the color term by a speaker (Erk 2009 is
an early example of this kind of approach); and we
assume that the region is convex when measuring
informativeness, as follows.

The intuition behind I is that smaller volumes
in a visual feature space provide more information
about a referent than larger volumes: knowing that
a referent’s visual features are located in a small
volume of the space informs a listener about what
the referent looks like more than does a large vol-
ume. In other words, general words, like purple
in the case of colors, or person in the semantic do-

4We decided to propose this new measure instead of build-
ing on the information-theoretic or the RSA traditions because
of its simplicity and adequacy for our research question. Note
that integrating both system-level and context-dependent infor-
mativeness in the aforementioned frameworks is a challenging
problem, which implies defining a multi-objective function
that interlocutors are believed to optimize, with a well-defined
trade-off between task-general and context-dependent pres-
sures; see Gualdoni et al. (2024) for a first attempt.
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Figure 2: Denotation in the CIELAB color space of the words purple and magenta (a) and 蓝 “blue” and海 “ocean”
(b). Note that there is a difference in numbers of objects, that we control for when computing I . A color chip called
海 “ocean” (b) would not be located in the top and lighter part of the 蓝 “blue” denotation region; more specific
names denote objects occupying smaller volumes in a visual feature space. Smaller volumes correspond to more
information provided by the word to a listener, and higher utterance costs for a speaker. Best viewed in color.

main of people, are labels for objects that are less
similar to each other than the referents of specific
words, like magenta, or skier —see for instance the
denotation of purple vs magenta in Figure 2a and
the denotation of 蓝 and海 in Figure 2b, and Ap-
pendix C for other examples. This results in more
specific words being denoted by smaller volumes
in a visual feature space (Gualdoni et al., 2023),
which we posit corresponds to higher amounts of
information conveyed to a listener.

Following our conceptualization, we define the
informativeness of a word w (Iw) as follows. Given
the denotation of w in the space, we compute a
measure of the spread of its visual features (Sw),
based on the average distance between pairs of
objects o that have been referred to by w:

Sw =
1

N

∑
i

∑
j ̸=i

d(oi, oj) (1)

Then, we define word informativeness as:

Iw =
1

Sw
(2)

In this work, d(oi, oj) is the Euclidean distance
in the CIELAB space (Brainard, 2003) between
objects oi and oj called by w. The CIELAB space
is a color representation model designed to be more
perceptually uniform than other accounts, in which
Euclidean distances mirror perceptual distance for
the human eye (Brainard, 2003). N is the number
of object pairs.5 The same measure could be ap-
plied to other metrics and feature spaces as well,

5Since most Iw scores were of the order of 10−2, we
multiply all the scores by 102 for readability.

modeling nouns from other domains, or other parts
of speech as well, e.g. adjectives.6

In the English portion of Monroe et al. (2017)’s
dataset, we compute Iw for each color name w
appearing at least 10 times, and in the Chinese por-
tion we set the threshold at 5 occurrences.7 We
obtain high Iw scores for words like olive, cyan, or
lavender, in English, and 灰 “ash” ,橄榄 “olive”
, or 海 “ocean” in Chinese; and low Iw scores
for words like blue, purple, and green, in English,
and 蓝 “blue” ,橙 “orange” , or红 “red” in Chi-
nese. Speakers generally prefer to refer to objects
at their basic level (Rosch and Mervis, 1975; Joli-
coeur et al., 1984), such as blue or purple in the
color domain (Collier, 1973), making more spe-
cific names like magenta or turquoise rare options.
Rare words come with higher costs, for instance in
terms of reading times (Smith and Levy, 2013) or
naming latencies (McRae et al., 1990). At least in
the set of words we study here, words with higher
Iw, not being basic level categories, are expected
to be more costly as well.

To connect language use to lexical systems, we
define the informativeness of a lexical system L
as the average over the Iw of the words uttered to
solve N interactions:

6This measure is instead not directly not applicable to other
parts of speech denoting relations, such as verbs and adverbs,
which cannot be easily reduced to regions in a meaning space
(Gärdenfors, 2014).

7Since some color names map to more data points than
others, to avoid size effects on the value of Iw, we adopt a
sampling strategy: if a color name has more than 100 chips
associated, we randomly sample N chips for T times, and
average the Iw values obtained for each sample. Our results
are robust to different sampling sizes and numbers of iterations.
We set N = 100 and T = 30.



IL =
1

N

N∑
i=1

Iiw (3)

4 I and Language Use

As discussed in Section 2, models of language use
predict that, in harder contexts, speakers will utter
longer and more specific referring expressions to
achieve successful communication. In our analy-
sis of language use, we aim at replicating these
findings with our word informativeness measure
and Monroe et al. (2017)’s data. Easier contexts
are those where targets and distractors share fewer
properties (Graf et al., 2016; Degen et al., 2019) or,
in the case of color chips, target and distractor chips
are further away in the color space (Monroe et al.,
2017). Our expectation for Iw is that in harder con-
texts higher Iw will be needed to reach successful
communication —Figure 1, bottom. Recall that we
are especially interested in exploring what happens
to the same target in different contexts. Thus, we
subset the data to keep chips that appear at least
twice in the dataset (see Appendix B for models
fitted on all the data). This leaves us with 5491 data
points across 2524 target chips, for English, and 60
data points across 29 target chips, for Chinese.

Models We use the distance between the target
chip and the hardest distractor as a measure of con-
text ease: the larger the distance, the easier the
task.8 We build a linear mixed-effects model, pre-
dicting Iw based on context ease. We add random
intercepts and random slopes for the target chips
(for English and Chinese) and for the worker ids
(for English only, since they are not available for
the Chinese data). Our hypothesis, based on pre-
vious work, is that easier visual contexts will be
characterized by a decrease in Iw.

Results We replicate findings from previous lit-
erature with our I measure and data for English
(Table 1, first row): for the same target, when the
context is easier, lower values of Iw allow for com-
munication success. We do not find an effect for
Chinese (Table 1, second row). Of note, as men-
tioned above, if we consider only the chips that
appear at least twice in the dataset, we only have
29 possible targets to fit the model on Chinese,

8The distance to the other distractor, in our data, is quite
highly correlated with the distance to the closest one, which is
supposed to compete more with the target (r=0.58, p<0.001).
Therefore, we only consider the latter.

Estimate Std. Error

English Intercept 3.51*** 0.05
Ctx ease -0.01*** 0.00

Chinese Intercept 2.54*** 0.36
Ctx ease 0.00 0.01

Table 1: Fixed effects of the linear mixed-effects model
fitted on the English and Chinese data subset of repeated
chips. Asterisks express p values: *** = p < 0.001.

Figure 3: Relationship between context ease and word
informativeness (Iw) in the portion of Monroe et al.
(2017)’s English dataset considered in Table 1. Commu-
nication in easier contexts can be successful with less
informative words.

which is probably too little to identify an effect
(see Appendix B for results on the whole data).

Considering our results for English, we can see
that, on average, for the same chip, an increase
of 50 in context ease leads to a decrease of 0.5 in
name Iw. How to interpret this? For Iw, this means
moving, approximately, from magenta to purple
(Iw = 2.93; Iw = 2.30) or from grass to green (Iw
= 3.07; Iw = 2.59). As for context ease, in Figure
1 - top, the distance between the purple target and
the green distractor (middle) is 54, while in Figure
1 - bottom, the distance between the magenta target
and the purple distractor (middle) is 17. Therefore,
moving from the bottom case to the top case means
increasing context ease of 37.9

The relationship between context ease and Iw
for the English data subset is illustrated in Fig-
ure 3. Even if the general trend follows our hy-
pothesis, there are some data points that indi-
cate an over-informative (center-right) or under-
informative (bottom-left) behavior by speakers,
which we analyze next.

Analysis of mismatches A qualitative inspection
of the mismatches yields two trends. First, some

9Here we are considering, for the sake of the example, the
chips in the middle as the only distractors.



Figure 4: Words like “bright” or “dark” are denoted by
non-convex regions, resulting in low informativeness
(Iw) scores.

interactions in very hard contexts are unintuitively
solved with low-informativeness words. The major-
ity of these cases comes from the use of the words
bright, dark, and light; or 亮 “bright”,暗 ‘dark”,
or浅 “pale” . These words are characterized by a
non-convex shape in the visual feature space: ad-
jectives like dark and bright can apply to many
different chips that are far from each other in the
space —see Figure 4. Our I measure, which is
based on the assumption of convexity, results in
very low informativeness scores for them.10

We also find pragmatic effects related to object
prototypicality. Psycholinguistic studies have an-
alyzed the effects of prototypicality in descriptive
naming tasks (Snodgrass and Vanderwart, 1980;
Brodeur et al., 2010; Liu et al., 2011; Tsaparina
et al., 2011; Gualdoni et al., 2023), showing that
the probability of producing a given object name
increases with the object’s typicality for the name.
Graf et al. (2016) found this effect also for in-
context communication. They found that speakers
deviate from frequent words to use a more costly,
specific name when the target is very typical for it,
even if a less costly name would suffice to identify
the target. In this sense, typicality modulates the
cost of the word. We find a similar pattern: when
the target is very typical for a name, speakers can
be over-informative, producing words with high
informativeness, thus more costly, even in cases of
easy disambiguation —see, for instance, the mint
chip in Figure 5a, a context in which “green" would
suffice.

As for under-informativeness, speakers can pro-

10Of note, given the setup of the referential game these
words could be abbreviations for longer and syntactically more
complex referring expressions like dark green or the dark one:
different measures may need to be designed to assess the
information provided by more complex constructions.

(a) mint: Iw = 3.34; context ease: 51

(b) blue: Iw = 1.71; context ease: 6

Figure 5: Typicality effects in language production. A
word with high I like mint (panel a) can be used when
the context is not hard, if the target is very typical for
that word. A word with low I like blue (panel b) can
solve the ambiguity in a very hard contexts, if the target
is much more typical for the color compared to the
distractors.

duce words with low informativeness in hard con-
texts, successfully solving the ambiguity anyway
—see, for instance, the blue chip in Figure 5b. We
interpret this as the result of interlocutors’ prag-
matic iterative reasoning about word interpretations
(Goodman and Frank, 2016; Graf et al., 2016; De-
gen et al., 2019): in a hard context with multiple
chips that could be called blue, if the speaker ut-
tered blue, it is likely that their intention was to
refer to the most prototypical blue. Object proto-
typicality and interlocutors’ reasoning expand the
information provided by words beyond denotation,
or more generally the semantics of words. In other
words, pragmatics enriches word meanings.

5 I and Language Systems

We have seen that words with different informa-
tiveness values are used by speakers in differently
hard contexts. What are the consequences of this
on the structure of the lexical system? We argue
that, to communicate successfully across differ-
ently hard interactions, we need a lexical system
where multiple entries providing different amounts
of information map to the same referent, allowing
for a dynamic adaptation in lexical choice. We first
formalize this idea in a simulation, and then run an
empirical test to confirm it.

Simulation Table 2 exemplifies a lexical system
with a soft mapping between referents and names,
listing 6 referents with 2 possible names each. Note



that, since general names denote larger volumes
in feature spaces, it is more likely for objects to
share general names (e.g. blue) rather than specific
ones (e.g. teal). However, since lexical systems are
complex and not perfectly organized hierarchically,
it is also possible to encounter pairs like referent
2 and referent 3 that share a specific name (teal),
but not the general one (blue vs. green). This may
be due to prototypicality: referent 2 may be more
typical for the color blue, and referent 3 for the
color green.

referent id general name specific name
referent 1 blue turquoise
referent 2 blue teal
referent 3 green teal
referent 4 purple magenta
referent 5 purple mauve
referent 6 purple mauve

Table 2: Naming system for 6 hypothetical referents,
with a soft mapping between referents and words.

A lexical system like the one just described is
not the most compact option: it lists 7 words for
6 referents, while, for instance, keeping only the
general names would result in 3 words, and keeping
only the specific names would result in 4 words.
However, as we will show, this kind of system
is more efficient: given that referents appear in
context, the system can maintain high accuracy in
communication, allowing a listener to identify the
referent, while minimizing the overall information
provided by speakers with their utterances.

How is this achieved? Imagine that each ref-
erent can appear in a visual context with another
referent, with uniform probabilities (e.g., {referent
1-referent 2}, {referent 1-referent 3}, and so on).
Assume furthermore that a listener’s accuracy in
guessing the target is at chance (50%) if the name
uttered to describe the target applies to the distrac-
tor as well. Then, a speaker-listener pair could
achieve very high accuracy by leveraging the sys-
tem structure —as we have shown in Section 4—
uttering the general name (low informativeness)
when the two referents do not share it (easy con-
text), and the specific name (high informativeness)
when they do (i.e. in a harder context where the
objects share more properties).

We run a simulation with this setup, using the
color data of Monroe et al. (2017). In particular,
we use the target chips that were annotated with
at least two different names, and the Iw values of
their corresponding names; and we generate from

these data all the possible target-distractor pairs.
Results are reported in Table 3, first two columns.

The simulation confirms our hypothesis: for both
English and Chinese data, the best accuracy-cost
trade-off is achieved by the actual system. The
actual naming system achieves the highest accu-
racy (98% English / 99% Chinese) with quite low
informativeness IL (2.78/1.99). The only cases
where communication success is at chance are
those where referents share both general and spe-
cific names, akin to the case of {referent 5 - referent
6} in Table 2. The other systems are sub-optimal.
The hypothetical system keeping only the general
name of each referent has a lower IL (2.56 / 1.83)
but achieves a lower accuracy as well (93% in both
cases). The hypothetical system keeping only the
specific name of each referent achieves an accuracy
of 96% / 98%, comparable to the one of the ac-
tual system (if slightly lower), but exhibits a much
higher IL of 3.99 / 3.13. Mistakes occur in cases
where the referents share both specific and general
names (as was the case for the actual system), or
to the cases where referents share the same spe-
cific name, but not the general one (as in the teal
example above).

Overall, thus, a system with a soft mapping be-
tween referents and names is an optimal solution,
maximizing communicative accuracy with lower
overall IL.

Empirical test We collect human data to com-
plement our simulation. We sample 100 target-
distractor1-distractor2 datapoints from the English
dataset, uniformly distributed with respect to their
context ease, and consider the name that the target
received in the sampled triplet as a reference name.
To generate lexical systems alternative to the actual
one, we simulate for each target a more general
name (lower informativeness) and/or a more spe-
cific name (higher informativeness). We do so by
taking the name with highest or lowest Iw that the
same chip received across contexts. This way, we
make sure that the word is adequate for the chip.11

In order to measure the accuracies achieved by the
different resulting lexical systems, we asked 3 En-
glish native speakers (unrelated to this study) to act
as listeners, guessing the target based on the word
we provide –see Appendix A for further details.

11Given that only a few chips were annotated more than
twice in different contexts with a single word, in the majority
of the cases we either simulate the general name, or the specific
name.



English - sim Chinese - sim English - emp.
Acc IL Acc IL Acc IL

Actual 98% 2.78 99% 1.99 96% 3.33
General 93% 2.56 93% 1.83 81% 2.36
Specific 96% 3.99 98% 3.13 89% 4.24

Table 3: Results of accuracy and IL for actual vs hypothetical lexical systems (general words only and specific
words only). Column 1 and 2: results of simulation; column 3: empirical data.

Results are reported in Table 3, column 3. The
relationship between the listeners’ performance in
the 3 conditions mirror what we found in our previ-
ous simulation. The actual naming system achieves
the highest accuracy (96%), with an intermediate
IL value (3.33). This makes it the best system:
the general system we simulated comes with lower
costs (IL = 2.36), but is not accurate (81%), while
the specific system we simulated is more costly
(4.24), without a gain in accuracy (89%).

Note that the scores in our empirical test are gen-
erally lower, which is due to the sampled contexts
being harder than in the simulation: in the simu-
lation, we created all the possible target-distractor
pairs, thus automatically generating a larger num-
ber of easier cases, given that each chip has a high
similarity only with a few chips, and is visually
very different from the majority of the other chips.
To have a better grasp on our listeners’ behavior,
we next dive deeper into their mistakes.

Analysis The mistakes that the listeners made
are in line with those that arose in the simulation.
Figure 6 shows an example. The target chip in the
black frame, called pink in the shown context, was
assigned the name mauve as a simulated specific
name. However, the specific name mauve can apply
to the rightmost distractor as well, leading to a
case where two referents appearing in the same
context share the same specific name (as in the
teal example), and in this case the listener failed to
identify the target.12

Cases of this nature, which can result in mistakes
in the annotation, are actually good examples of
how pragmatics is again at play, expanding word
meanings beyond denotational semantics. For in-

12Recall that for some chips we could not simulate a name
more specific / general than the actual one (already specific
/ general). As a sanity check, we report that our annotator’s
accuracy on this portion of data is in line with that of the
actual system (95% for simulated specific data; 98% for the
simulated general data), while it decreases for the portion of
data with simulated names (81% for simulated specific; 69%
for the simulated general).

Figure 6: Target chip, called pink in this context, for
which we simulated mauve, here misleading, as the
rightmost chip was chosen instead.

stance, both pink and mauve could describe the
target in Figure 6 in isolation. The word mauve is
per se more informative than the word pink, but it
is not contextually informative, since the distrac-
tor on the right may also be called mauve. Given
that the target is more prototypical for pink than
the distractor, a listener may expect the word pink
–and not mauve– to be used to describe it, even if
the context is hard and the word pink is less spe-
cific. Moving from pink to mauve increases word
informativeness but does not factor in pragmatics,
which in this case leads to unsuccessful communi-
cation (note that Figure 5b, discussed in Section 4,
constitutes a successful case of the same type of
pragmatic reasoning).

6 Discussion

In this work, we have studied why a lexical system
where multiple names map to the same referent is
a good solution for human communication. We
have done so by proposing a measure of word in-
formativeness grounded in a visual feature space
and based on word denotations.

Previous studies on the optimality of lexical sys-
tems often consider the number of lexical entries
in a system as a measure of system complexity
(Regier et al., 2015; Xu et al., 2020), with smaller
lexicons preferable over large ones due to cognitive
constraints. These approaches would fail at cap-
turing how an increased lexicon size can become
advantageous when we factor in communication in
context, allowing for the minimization of the over-
all amount of information transmitted in language
use. Our study, drawing a connection between lan-



guage use in context and the consequent structure
of an efficient lexical system, bridges this gap.

Connecting properties of language production
in context with properties of the lexicon is much
in the spirit of previous work connecting language
production and properties of grammars regarding
language universals (Hawkins, 2004; Franzon and
Zanini, 2023). Future work should explore paral-
lelisms between the lexicon and the grammar in
this respect. This is also intimately connected to
diachronic dynamics, and the causes and conse-
quences of semantic change. Adopting an evolu-
tionary perspective, Gualdoni et al. (2024) study
how a human-like semantics can emerge from
contextually-rich, pragmatic interactions; and Ko-
brock et al. (2024) compare lexicons emerging in
artificial agents that have access to context infor-
mation to those of context-agnostic ones. Future
work should delve deeper into how word informa-
tiveness and reference to objects in context interact
to produce a given lexicon. A related question is
how system learnability affects communication ac-
curacy and shapes language evolution (on the topic
see, for instance, Carlsson et al., 2024; Gyevnar
et al., 2022; Tucker et al., 2022).

Our work also resonates with previous research
on why the lexicon presents pervasive ambigu-
ity, and specifically the fact that most words have
multiple meanings (Juba et al., 2011; O’Connor,
2015; Fortuny and Corominas-Murtra, 2015; Pi-
antadosi et al., 2012). As mentioned in the Intro-
duction, lexical ambiguity corresponds to one-to-
many relationships between words and meanings,
while we have focused on many-to-one relation-
ships between words and referents. We believe
that both phenomena are different consequences of
efficiency constraints acting on the lexicon. Our
findings complement previous research (Piantadosi
et al., 2012) by showing that, in general, many-to-
many mappings between words and meanings can
be characterized as efficient solutions.

An advantage of our specific approach lies in the
simplicity and the flexibility of our informativeness
measure, that could be adapted to other kinds of
distributed representations, allowing us to study
different phenomena besides referential language
in language and vision. For instance, when the
subject of a sentence is unexpected for a listener,
a more informative word like president instead of
man may be preferred (Aina et al., 2021). Our
measure (which could be derived from language

models considering the distances between contex-
tualized embeddings of the same word) could allow
for joint analyses of discourse and vision data un-
der the same light, taking a step towards a unified
view of human referential acts (see, for instance,
Franzon and Zanini, 2023, for the analysis of a
related phenomenon in morphology).

That being said, our measure only accounts for
the semantic meaning of words, suffering from
a limitation: in every interaction, pragmatics en-
riches word meanings and modulates the informa-
tion provided by words in context, or their cost for
speakers. A denotational measure of word informa-
tiveness cannot capture the full range of phenom-
ena characterizing language production in context.
Moreover, our formulation of the measure cannot
accurately describe words denoted by non-convex
regions in meaning spaces. We leave it to future
work to define alternative measures that take into
account more complex shapes (see Figure 4), while
still being general enough.

Finally, in our analyses we have made the sim-
plified assumption that speakers want to provide
the right amount of information, avoiding over-
informative utterances. There is literature showing
that this is not always the case (Engelhardt et al.,
2006; Koolen et al., 2011), and that the produc-
tion of redundant and over-informative referring
expressions can fall in the set of behaviors that max-
imize efficient communication (Rubio-Fernandez,
2016; Degen et al., 2019). Moreover, considera-
tions beyond informativeness affect speakers’ nam-
ing choices, e.g. speakers could choose professor
instead of woman to highlight aspects of the refer-
ent contingently relevant to them (Silberer et al.,
2020), even without any explicit pressure for dis-
crimination. A more comprehensive analysis of
language use should account for these factors as
well.

7 Conclusion

Objects have many names. In this work, we have
analyzed human color naming data exploring why
some degree of soft mapping is a feature of an
optimal lexical system, bridging the gap between
analyses of lexical systems and language use. We
conclude that systems where multiple words con-
veying different amounts of information can be
used to describe the same referent are optimal, in
that they maximize communicative accuracy while
minimizing the amount of information conveyed.



8 Limitations

Our study aims at analyzing the structure of human
lexical systems. However, given the scarce avail-
ability of cross-linguistic datasets studying situated
communication, we limit ourselves to English and
Mandarin Chinese; the latter, with less coverage
than the former. This constitutes a limitation of
our work, which would benefit from the analysis
of a more diverse set of lexical systems. Along
the same lines, our analysis is limited to the color
semantic domain: validating the word informative-
ness measure on a different system of categories,
as well as running the analyses on richer semantic
domains, would strengthen our conclusions (see
Gualdoni et al. 2023 for preliminary evidence in
the domain of people).

It is also worth noticing that our analysis of the
sub-optimality of hypothetical lexical systems is
limited to two alternative systems that we could
simulate with the data available to us. The over-
all considerations on the optimality of human-like
lexical systems would benefit from the analysis of
more, and more diverse, hypothetical alternatives.

Finally, our simulation in Section 5 relies on sim-
plified assumptions, such as referents co-occurring
in contexts with uniform probabilities. Estimating
the real probabilities of referents co-occurring con-
stitutes a big challenge, but would also constitute
a great improvement for all studies interested in
understanding the pressures that shape the human
lexical system.
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A Details on the data collection

Each annotator was presented with the same set of
target chips to annotate, but with different names:
one annotator received the actual system, one re-
ceived the simulated general system, and one re-
ceived the simulated specific system. Each block
of questions contained 5 randomly placed controls,
designed to ensure that annotators were paying
attention to the task. These cases were made inten-
tionally very simple. The data collection routine
was written in Psychopy (Peirce et al., 2019). There
was no time limit for completing the study. Instruc-
tions for annotators: “Welcome! In this study, we
ask you to identify a target color chip in a set of
3 chips, based on a word. You will always see
3 color chips. Above them, there will be a word
describing the target. We ask you to click on the
target. Sometimes you will not be sure about your
answer. Please make your best guess. Reply with
what you think is the most plausible answer”.

B Models fitted on all the data

Table 4 shows effects when modeling the whole
data. For both English and Mandarin Chinese, we
identify the expected trend (recall from Section

4, this effect disappears when we subset the data
to keep only chips annotated at least twice across
different contexts, which reduces the total of the
target chips available to fit the model to 29).

Estimate Std. Error

English Intercept 3.80*** 0.04
Ctx ease -0.02*** 0.00

Chinese Intercept 3.27*** 0.14
Ctx ease -0.01* 0.00

Table 4: Fixed effects of the linear mixed-effects model
fitted on the English data (random intercepts and random
slopes for worker-ids) and of the linear model fitted
on the Chinese data —without subsetting the data to
include only chips annotated at least twice. Asterisks
express p values: *** = p < 0.001; * = p < 0.05.
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Figure 7: Denotation in the CIELAB color space for blue and turquoise (panel a), green and olive (panel b), pink
and blood (panel c).
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Figure 8: Denotation in the CIELAB color space for 绿 and 橄榄 (panel a), 橙 and 土 (panel b), 亮 and 浅
(panel c). Translations, in order: green, olive, orange, soil, bright, pale.


